
The field  with  elements has a finite extension of degree  for each natural number . On Twitter,
@syzygay1 asked if this can be extended to infinite field extensions of  for a generalized notion of
"degree". For the field , this leads to the concept of supernatural numbers, which are connected to
the Arithmetic Site of Connes and Consani. It is interesting to see what happens for other fields as
well, and this is what led me to write the notes below.

After looking at the case of the field , we discuss the Pontryagin dual of the absolute Galois group,
what this has to do with the field with one element, and how we could classify algebraic extensions for
fields other than .

Supernatural numbers  

The problem was first studied by Ernst Steinitz in his 1910 paper "Algebraische Theorie der Körper"
("Algebraic Theory of Fields"). He showed that the algebraic extensions of  correspond to what are
now called the supernatural numbers or Steinitz numbers. The idea behind it was rediscovered by
@syzygay1 on Twitter. Each algebraic extension  is the union of its finite subfields, so we have
to keep tracks of which finite subfields occur. If  contains , the (unique) field extension of  that
has degree , then  also has to contain all subfields of . These are precisely the fields  for 
a divisor of . Further, if  contains two fields  and  of degree  and , then it also contains the
union of these two fields, which is  for  the least common multiple of  and .

There is an analogy with divisors here. If a natural number  is divisible by , then it is also divisible by
each  as long as  divides . And if  is divisible by  and , then it is also divisible by the least
common multiple of  and .

https://twitter.com/syzygay1/status/1290861985639411712
https://arxiv.org/abs/1602.01627
https://arxiv.org/abs/1405.4527
http://resolver.sub.uni-goettingen.de/purl?GDZPPN002167042


So we can define a supernatural number as a subset  such that:

1. if  and  divides  then ;
2. if  then the least common multiple of  and  is also in .

Then each supernatural number  defines a field extension  and every algebraic extension is
of this form.

One problem: with this definition supernatural numbers don't look like numbers. The remedy is that you
can think of each supernatural number  as the set of divisors of a formal product 

, where the product is over all primes, and each exponent  is in . This

is how supernatural numbers are usually defined.

Similar base fields  

Steinitz managed to give a very precise classification of the algebraic extensions of the finite field .
Can we do something similar for other base fields?

The only property of  that was used is that  has a unique extension of degree  for each natural
number , and that the extension of degree  is contained in the extension of degree  if and only if 

 divides .

This property holds for other fields as well, for example for any finite field (with cardinality a prime
power and not necessarily a prime).

We can also use Steinitz's classification to find an infinite field with this property. Take for example 
the set of squarefree natural numbers. This corresponds to the formal product  over all

primes . In this case, there is also a unique extension of degree , namely the one corresponding to
the product . So for this field, the algebraic extensions are again classified by the supernatural
numbers.

We also don't have to restrict ourselves to field extensions. If  is the ring of  matrices
over the complex numbers, then there is a ring morphism  if and only if  divides 
. This is exactly the same situation as with field extensions... So for a supernatural number  we can
look at the union of a sequence  where  are divisors of , each
one dividing the next one, such that  "converges" to . Modulo some analysis, these infinite unions
are precisely the UHF-algebras. So UHF-algebras can also be classified using supernatural numbers.

Visualizing the supernatural numbers  

All this is a good excuse for me to bring up the visualizations that I made of the supernatural numbers,
see the previous post. Here is one of them:

https://jhemelae.github.io/2019/10/29/big-cell.html


The red dots represent finite extensions, and they converge in  to supernatural numbers that
represent algebraic extensions.

Relation to the Galois group  

Algebraic extensions correspond to closed subgroups of the absolute Galois group, according to the
fundamental theorem of Galois theory. For , the absolute Galois group is isomorphic to the additive

group of profinite integers . The closed subgroups of finite index are the subgroups  for  a
natural number. The more general subgroups can be written as an intersection of closed subgroups of
finite index.

To determine the closed subgroups, you can also use Pontryagin duality. There is a bijective
correspondence between closed subgroups of an abelian topological group , and closed subgroups
of the Pontryagin dual group , see here.

In the case of the field , the absolute Galois group is  and this has as Pontryagin dual , with
the discrete topology. (Galois groups are compact so they always have a discrete group as Pontryagin
dual.) So algebraic extensions of  correspond to subgroups of , or in other words, subgroups of

 that contain .

It follows that the subgroups of  that contain  are also classified by the supernatural numbers. The
subgroup corresponding to the supernatural number  contains precisely the fractions such that (in
reduced form) the denominator is a divisor of .

The field with one element  

https://ncatlab.org/nlab/show/main+theorem+of+classical+Galois+theory
https://mathoverflow.net/a/191315/37368


To get a bit of intuition for Pontryagin duality, it is good to take a look at the (conjectural) field with one
element . There is no fixed definition of what  is exactly, but there are a lot of properties that it

should satisfy. For example, since the absolute Galois group of  is isomorphic to  for all primes ,

we can say that, by analogy, the absolute Galois group of  is also isomorphic to . This means in
particular that  has a unique extension of degree  for each natural number .

One definition of  is that  is the trivial monoid, and that ring extensions of  are arbitrary
commutative monoids. The idea is that we forget addition and only look at multiplication. The
multiplicative group of a finite field is cyclic, so the finite field extensions of  should be the finite
cyclic groups. Fortunately, there is a unique cyclic group of order  for each natural number , so the
field extensions are how we want them.

Pontryagin duality shows up here in an interesting way: the algebraic closure of , in the above
definition, is the group , which is precisely the Pontryagin dual of the absolute Galois group.

More general base fields  

Can we classify the algebraic extensions of a general field , similarly to how we classified the
algebraic extensions of ? The answer is probably no, because Galois theory is too difficult for
general fields. A first obstruction is that in general the absolute Galois group is not abelian. So we
cannot use Pontryagin duality, and as an alternative we probably have to look at -dimensional
representations of the Galois group, and these are very complicated.

So we'll have a look at two examples with abelian Galois group.

The first example that springs to mind is to look at the abelian extensions of . These are the Galois
extensions of  that have abelian Galois group. Alternatively, these are the extensions of  that are
contained in the maximal abelian extension . By the fundamental theorem of Galois theory, we
now know that the abelian extensions of  correspond to the closed subgroups of the Galois group 

.

This Galois group can be computed using Kronecker-Weber theorem: up to isomorphism you get 

, where the product is over all integers  (see e.g. Lenstra's notes on profinite groups).
For the Pontryagin dual we then find . So abelian extensions of  correspond to
subgroups of  . At the moment, I have no idea how to describe the subgroups of a
group like this in a nice way. It is already difficult to describe the subgroups of  if you know the
subgroups of  and the subgroups of , see the explanation here. For infinite products or infinite

direct sums this seems impossible. The difficulty does not appear for  because the orders

of finite quotients of  are coprime to the orders of finite quotients of , for .

We can simplify the situation a lot by looking at the field . This is the notation I borrowed from
Hendrik Lenstra's book on Galois theory for schemes. As the notation suggests, it is the extension of 

 that you get by adjoining all elements  for . The Galois group of  over  is
isomorphic to  for some countably infinite set  (this is Exercise 2.14 of Lenstra's book).
So the Pontryagin dual is . Its subgroups are complicated, but not extremely complicated.
We can interpret  as a vector space of countably infinite dimension over , and then the
subgroups are precisely the vector subspaces.

https://ncatlab.org/nlab/show/main+theorem+of+classical+Galois+theory
http://websites.math.leidenuniv.nl/algebra/Lenstra-Profinite.pdf
https://math.stackexchange.com/a/488222/81217
http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf


I would be interested in a classification of certain algebraic extensions of  as well. The absolute
Galois group of  is the profinite completion of the free group with  many generators, where  is
the cardinality of the complex numbers. The Pontryagin dual is then the product  over an
index set  of cardinality . So the abelian extensions of  should correspond to the subgroups of 

. This does not seem like a very useful description. Maybe we can simplify the situation by
allowing only abelian extensions that are ramified at a prescribed set of points. But I don't really
understand how this works... let me know if you have some ideas!
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