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Toposes

A Grothendieck topos is a category of sheaves Sh(C, J) where C is a
small category and J is a Grothendieck topology on C.

Examples:
I the category of sets;
I Sh(X ) for X a topological space;
I the petit étale topos Sh(Xét) for X a scheme;
I the category of G-sets for G a group;
I the category of directed graphs.
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Properties of toposes

Toposes have all colimits and limits, and

colim
i∈I

(Xi ×Z Y ) '
(

colim
i∈I

Xi

)
×Z Y .

Idea: gluing things together is stable under base change

Every morphism in a topos can be written in a unique way as an
epimorphism followed by a monomorphism.
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Geometric interpretation

We often identify a topological space X with the topos Sh(X ).

The objects of a more general topos E are then thought of as
“sheaves on E”, and in this way E becomes a generalized topological
space.

If X is a topological space equipped with a continuous G-action, for
a discrete group G , then there is a topos ShG(X ) of G-equivariant
sheaves on X . This is the “formal/stacky quotient” of X by G , as
opposed to the coarse quotient Sh(G\X ).
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Special case: presheaf toposes

A presheaf topos is a category of the form

PSh(C) ' [Cop,Sets]

for C a small category.

A monoid is a small category with one object. We will consider
categories of the form PSh(M) for M a monoid.
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Geometric morphisms

A geometric morphism f : F → E is an adjunction

F E
f∗

f ∗

with f ∗ preserving finite limits.

Further, f is called essential if f ∗ has a further left adjoint f!.
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Geometric morphisms

This is analogous to topology: in topology each continuous map
f : Y → X gives an adjunction

O(Y ) O(X )

f −1

with f −1 preserving finite limits.
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The base topos Sets

Each (Grothendieck) topos E has a unique geometric morphism

E Setsγ

with

I γ∗(S) the constant sheaf on S; and
I γ∗(E ) = Γ(E ) = HomE(1,E ) the global sections of E .

We call γ the global sections geometric morphism.
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Points

A point of a topos E is a geometric morphism p : Sets→ E .

Here Ep = p∗(E ) is often called the stalk of E at p,
and p∗(S) is the skyscraper sheaf on S at p.

A morphism of points p → q is a natural transformation p∗ ⇒ q∗.
The category of points of E is denoted by Pts(E).
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Points of topological spaces

Proposition
Let X be a topological space. There is a bijection between
isomorphism classes of points of Sh(X ) and irreducible closed
subsets of X.

The closure of a singleton {x} is always irreducible and closed.

We say that X is sober if every irreducible closed subset is the
closure of a unique point. For sober spaces, there is a bijection
between points of Sh(X ) and elements of X .
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Sober spaces

Examples:
I any Hausdorff space;
I the spectrum of a ring with the Zariski topology;
I the line with double origin;
I the Sierpiński space.

Non-examples:
I an infinite set with the indiscrete topology;
I an infinite set with the cofinite topology.

11/45



Sobrification

Each topological space X has a sobrification X̂ . This is a sober
space such that

Sh(X ) ' Sh(X̂ ).

So points of Sh(X ) are given by elements of X̂ .
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Monoid toposes

Let M be a monoid. What are the points of PSh(M)?

Note that PSh(M) has an alternative description as the category of
right M-sets.
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Motivation

The Arithmetic Site by Connes and Consani is the topos PSh(N×+),
for N×+ = {1, 2, 3, . . . }, seen as monoid under multiplication,
equipped with a sheaf of semirings as structure sheaf.

Theorem (Connes–Consani)
The points of PSh(N×+) are classified up to isomorphism by the
double quotient

Q∗+\Af/ Ẑ∗.
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Motivation

Questions:
I The monoid N×+ is a free commutative monoid on the primes.

Why do we still get uncountably many points?
I Is the relation to the adeles a coincidence?
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Motivation

Theorem (Sagnier)
Let K be an imaginary quadratic field with class number 1, and let
M be the monoid of nonzero elements in the ring of integers
OK ⊂ K. Then the points of PSh(M) are classified up to
isomorphism by the double quotient

K ∗\Af
K/ ÔK

∗
.

Alternatively, the points of PSh(M) correspond to nonzero
OK -submodules of K .
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Flat functors

If C is a small category, then points of PSh(C) correspond to
functors

F : C → Sets.

that are flat in the sense that

I F (c) 6= ∅ for some c in C ;
I if x ∈ F (c) and y ∈ F (c ′) then there is a diagram c ← d → c ′

and an element z ∈ F (d) such that z |c = x and z |c′ = y ;
I for two morphisms f , g : d → c and x ∈ F (d) with x |f = x |g

there is a morphism h : e → d with fh = gh and z ∈ F (e) such
that z |h = x .
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Flat left M-sets

If M is a monoid, then points of PSh(M) correspond to left M-sets
A that are flat in the sense that

I (non-empty) A 6= ∅;
I (locally cyclic) if x , y ∈ A then there are elements m,m′ ∈ M

and an element z ∈ A such that mz = x and m′z = y .
I (condition (E)) for two elements m,m′ ∈ M and an element

a ∈ A such that ma = m′a, there is an element m′′ ∈ M and an
element b ∈ A such that mm′′ = m′m′′ and a = m′′b.

Further, A is flat if and only if −⊗M A preserves finite limits.

18/45



Exercise

Let X and Y be infinite sets with |X | ≤ |Y |.

Prove that Hom(X ,Y ) is flat as right End(X )-set.

This means that the category of points of PSh(End(X )op) is not
small!

19/45



Case of the Arithmetic Site

(From Connes and Consani, “Geometry of the Arithmetic Site”.)

Let A be a flat left N×+-set. Then for two elements x , y ∈ A we can
find elements m,m′ ∈ N×+ and an element z ∈ A such that x = mz
and y = m′z .

Now we define:
x + y = (m + m′)z .

Connes and Consani then show that (A,+) is isomorphic to L ∩Q+
for L ⊆ Q a nonzero subgroup.
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Ind-categories

The category of points of PSh(C) is also equivalent to Ind(Cop), the
category of formal filtered colimits, with as morphisms

HomInd(Cop)(lim−→
i∈I

Xi , lim−→
j∈J

Yj) ' lim←−
i∈I

lim−→
j∈J

HomCop(Xi ,Yj).

If A is a locally finitely presentable category, then A ' Ind(Afp).
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Ind-categories

Examples:

I the category of points for PSh(Commop
fp )

is the category of rings;
I the category of points for PSh(FinSetsop)

is the category of sets.

How can we apply this idea to PSh(M) for M a monoid?
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Ind-categories

Let M = (Z, ·) the monoid of integers under multiplication.

Then M ∼= EndAb(Z) for Ab the category of abelian groups
(which is lfp, with Z finitely presented).

So the category of points of PSh(M) is the full subcategory of Ab
consisting of those abelian groups that are filtered colimits of copies
of Z.

These are precisely the subgroups of Q.
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Ind-categories
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Equivariant sheaves

Let X be a topological space equipped with a continuous G-action,
for G a discrete group.

Suppose that X has a basis of open sets B on which G acts
transitively.

Then ShG(X ) ' ShG(B) ' Sh(M, J) for

M = {g ∈ G : g(U) ⊆ U}

and a certain Grothendieck topology J .
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Equivariant sheaves

So ShG(X ) ' Sh(M, J). When is J the presheaf topology?

This is precisely when

U =
⋃
i∈I

Ui ⇒ ∃i ∈ I, U = Ui

for open sets U,Ui in B. We say that B is a minimal basis.

In this case, ShG(X ) ' PSh(M). The points of PSh(M) are then
given by elements x ∈ X̂ . Morphisms of points x → y are elements
g ∈ G such that x ≤ g(y).
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Equivariant sheaves

Conversely, suppose that G is a group and M ⊆ G a submonoid.

Take X = G/M∗ with as basis of open sets B the sets of the form

Ug = {gm : m ∈ M}.

The left G-action on G/M∗ by multiplication is continuous and
works transitively on B.

So PSh(M) ' ShG(X ).
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Equivariant sheaves

Example: the free monoid M = 〈a1, . . . , an〉.

We consider M as subgroup of the free group G on n generators.
In this case, M∗ = 1, so X = G/M∗ = G .
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Equivariant sheaves
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Equivariant sheaves

Conclusion: the points of PSh(M) correspond to possibly infinite
words

x = gx1x2x3 . . .

with each xi ∈ {a1, . . . , an} and g ∈ G .

Further, we can compute endomorphism monoids of these points:
I End(x) ∼= M if x is a finite word;
I End(x) ∼= Z if x is eventually periodic;
I End(x) ∼= 1 in all other cases.
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Equivariant sheaves

Example: the monoid N×+ of nonzero natural numbers under
multiplication.

We take N×+ ⊂ Q∗+. Again, 1 ∈ N×+ is the only invertible element.
So X = Q∗+.

Basic open sets are the sets Uq = {qn : n ∈ N×+} ⊆ Q∗+.
In particular, U1 = N×+.
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Equivariant sheaves

4 6 9

2 3

1
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Equivariant sheaves

6∞

3 · 2∞ 2 · 3∞

2∞ 3∞

4 6 9

2 3

1
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Equivariant sheaves
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Equivariant sheaves

The elements of Af /Ẑ∗ are given by formal products
∏

p pep with
ep ∈ Z ∪ {+∞} for each prime p, and ep ≥ 0 for almost all primes.

This space is precisely the sobrification of X = Q∗+.

So PSh(N×+) ' ShQ∗+(Q∗+) ' ShQ∗+(Af /Ẑ∗).

Similarly, PSh(Mns
n (Z)) ' ShGLn(Q)(Mn(Af )/GLn(Ẑ)).

35/45



Étale geometric morphisms

This part is based on joint work with Morgan Rogers.

An étale geometric morphism is a geometric morphism of the form

E/X Ef

with f ∗(E ) given by πX : E × X → X .

Question: what are the étale geometric morphisms

PSh(M)→ PSh(N),

with M and N monoids?
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Étale geometric morphisms

The points of E/X are given by pairs (p, x)
with p a point of E and x ∈ p∗X .

The morphisms (p, x)→ (q, y) are the
morphisms η : p∗ → q∗ such that ηX (x) = y .

Pts(E/X ) '
∫ p∈Pts(E)

p∗(X ).
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Étale geometric morphisms

Theorem (H, Rogers)
Let φ : M → N be a monoid map. Then the induced geometric
morphism PSh(M)→ PSh(N) is étale if and only if

1. φ is injective;
2. if a ∈ φ(M) and ab ∈ φ(M) then b ∈ φ(M);
3. for every n ∈ N there is some u ∈ Nn such that nu ∈ φ(M).

Example: the inclusion φ : N×+ ↪→ Zns.
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Étale geometric morphisms

More precisely, PSh(N×+) ' PSh(Zns)/X with X = {−1, 1} with
the right Zns-action given by

x · z =
{

x if z > 0;
−x if z < 0.

So the points of PSh(N×+) are pairs (p, σ) where p a point of
PSh(Zns) and σ ∈ {−1, 1}.
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Complete spreads

Let PSh(C) be a presheaf topos. Then a complete spread to
PSh(C) is a geometric morphism of the form

PSh
(∫ c∈C

F (c)
)
→ PSh(C)

induced by a discrete opfibration∫ c∈C
F (c)→ C

given by a functor F : C → Sets.
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Complete spreads

For more on (complete) spreads, see the following works by
Bunge–Funk:

I “Spreads and the symmetric topos”
I “Spreads and the symmetric topos II”
I “Singular Coverings of Toposes”
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Complete spreads

By the results of Bunge–Funk, the category of points of PSh(
∫ N Y )

is given by pairs (A, χ) where A is a flat left N-set and χ : A→ Y a
morphism of left N-sets.
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Complete spreads

Theorem (H, Rogers)
Let φ : M → N be a monoid map. Then the induced geometric
morphism PSh(M)→ PSh(N) is a complete spread if and only if

1. φ is injective;
2. if b ∈ φ(M) and ab ∈ φ(M) then a ∈ φ(M);
3. for every n ∈ N there is some v ∈ No such that vn ∈ φ(M).

Example: the inclusion φ : N×+ ↪→ Zns.
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Complete spreads

More precisely, PSh(N×+) ' PSh(
∫ Zns

Y ) where Y = {−1, 1} with
the left Zns-action given by

z · x =
{

x if z > 0;
−x if z < 0.

So the points of PSh(N×+) are pairs (A, χ) with A a left Zns-set and
χ : A→ {−1, 1} a morphism of left Zns-sets.
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Thank you!
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