GEOMETRIC MORPHISMS TO SLICE TOPOSES

JENS HEMELAER

We give a proof for a result from SGA4 [sga72] that describes the geometric
morphisms g : F — £/X in terms of pairs (f,a) where f : F — £ is a geometric
morphism and a : 1 — f*(X) is a global element. This result appears as Proposition
5.12 in SGA4, Exposé IV, and the proof given here will be very similar to the proof
in SGAA4.

Throughout, we fix a Grothendieck topos £ with an object X in &, and we will
write

x:E/X =&
for the projection geometric morphism associated to the slice topos £/X. The
goal is to determine the category of geometric morphisms Geom(F,E/X) for any
Grothendieck topos F, in terms of Geom(F, ). We use the standard convention
that a map of geometric morphisms g — ¢’ is given by a natural transformation
g* = (¢')*. Note that SGA4 uses the opposite convention. We will show that the
functor
Geom(F,E/X) — Geom(F,E)

induced by z is a discrete opfibration, corresponding to the copresheaf that sends f
to Hom (1, f*(X)). In symbols:

feGeom(F,E)
(1) Geom(F,&/X) ~ / Hom (1, f*(X)).

Spelled out, this means that Geom(F,£/X) is equivalent to the category with
e as objects the pairs (f,a) with f : F — £ a geometric morphism and
a:1— f*(X)amap in F;
e as morphisms (f,a) — (f’,a’) the natural transformations n : f* = (f')
such that the diagram

*

1 —— f*(X)

x J”X
() (X)
commutes.

For a fixed geometric morphism f : F — £ we denote by Geomg(F,E/X) the
category of morphisms F — £/X relative over £. The category Geomg (F,E/X)
is precisely the fiber of the discrete opfibration Geom(F,£/X) — Geom(F,€)
above f. It has as objects the morphisms g : F — £/X such that g ~ f, and as
morphisms g — ¢’ the natural transformations 7 : g* = (¢')* such that an : f* = f*
is the trivial natural transformation. From it follows that

(2) Geomg(F,E/X) ~ Homzx(1, f*(X)),
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by which we mean that Geomg(F,E/X) is the discrete category corresponding to
the set Homz(1, f*(X)). In the special case where F ~ £/Y for some object ¥ in
&, and f is the projection geometric morphism y : £/Y — &, we see that

Geomg(£/Y,£/X) ~ Homg,y(1,y"(X)) ~ Homg(y(1),X) ~ Homg(Y,X).

This result appears as Exercise 5.14 in SGA4, Exposé IV (as an application of
). A similar, direct proof is given in the recent paper by Caramello and Zanfa
[CZ21] Lemma 6.1.2], where the result is put in a wider context.

Finding references or elegant proofs for Geomg(€/Y,E/X) ~ Homg (Y, X) was
the original motivation to look at the result discussed in this note. I thank Morgan
Rogers and Steve Vickers for interesting discussions on this topic. I expect that
there are other interesting proofs of Geomg(E/Y, £/X) ~ Homg (Y, X); if you know
any, please let me know.

1. THE PROOF

For an object ¢ : E — X in £/X, we consider the diagram

T X X T2

F———— ExX ¢ Ex X xX
Ixep T X T X T
(3)
¥ T2 T3
X
in £/X. Our notations are as follows: we write m; for the projection on the ith
component, and for maps f; : Z — Z; with ¢ € {1,2,...,n} we write f1 x -+ X f,

for the corresponding map Z — Z1 X -+ X Z,.
Lemma 1. Diagram above is an equalizer.

Proof. Let ¢ : Z — E x X be a morphism in £/X such that (m X my X m2)9) =
(m1 X @m X o). This is the case precisely when 1) = @m9p. This means that
the map w1y : Z — E satisfies (1 x @)m9p = 9 X @, so a lift Z — FE exists. If
h: Z — FE is another map that makes the diagram

Z

hlx

EF—— Ex X
11X

commute, then we see that w19 = m1(1 X p)h = h, so h = w11 is the unique lift. O

Note that in this way we have written ¢ : F — X as an equalizer of two objects
in the image of x*. Further, note that the map m X pm X 7o is the image of 1 X ¢
along x*, while m; X w9 X w5 does not lie in the image of z*. In more compact
notation, we can say that ¢ is the equalizer of the diagram

T X AT
(4) x*(F) % x*(F) x *(X)

z(1xg
where X now denotes the product in £/X, m denotes the map to the terminal
object, and A : 1 — x*(X) is the map in £/X corresponding to the diagonal map
X — X x X (the terminal object 1 is given by the identity X — X and x*(X) is
given by mo : X x X — X).
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Proposition 2. Let g : F — £/X be a geometric morphism and let f: F — & be
the composition f = xg. Then g* is completely determined by f* and by the image
of the map A : 1 — z*(X) in £/X, as defined above.

Proof. For an object ¢ : E — X in £/X, we can write ¢ as an equalizer as in
diagram . Because g = f and g preserves finite products and equalizers, we
then see that g*(¢) is the equalizer of

1xg™(A)w
[1(E) —/——= 7(B) x f*(X)
I (1xe)
which as promised only depends on f and g*(A). Further, if there is another object
¢+ E' - X and a morphism ¢ : E — E’ in £/X (which means that ¢’y = ¢),
then v arises from taking equalizers for the diagram

T X AT
2*(E) /=== 2*(E) x *(X)
l ¥ (1x ) l
=*(¥) &y x72)
T X AT
z*(B) —/———= «*(E') x z*(X).
2" (1x¢)

So g*(v) is the map arising from taking equalizers for the diagram

1xg*(A)mw

[(E) —/——= f"(B) x f*(X)
fr(1xe)
f*(w)l lf*(wm Xmz)
Ixg* (A)m

SHE) —/——= f7(E') x f*(X).
I (1xe")
This shows that also g*(¢)) depends only on f and g*(A). O

We conclude that the geometric morphism g : F — £/X is completely determined
by the map f : F — & given by f = zg, together with a choice of map a : 1 — f*(X)
(namely a = g*(A)). It turns out that a converse holds as well:

Proposition 3. Fiz a geometric morphism f : F — &. FEvery choice of map
a:1— f*(X) is of the form g*(A) for some geometric morphism g : F — £ with
xg~ f.

Proof. The geometric morphism f : F — £ induces a geometric morphism (f/X) :
F/f*(X) — £/X that sends ¢ : E — X to f*(¢) : f*(E) — f*(X). The functor
(f/X)* sends the map A : 1 — 2*(X) to the map in F/f*(X) corresponding to the
diagonal map

1) 5 ()

(5) \ Inz

Further, there is a geometric morphism F/a : F — F/f*(X) corresponding to
a:1— f*(X). Its inverse image functor (F/a)* sends a map o : Y — f*(X) to
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the pullback along a, as follows:
(Fla)*(0) —— Y
11— f*(X).

On morphims, (F/a)* is similarly defined via the pullback construction. We now
see that the pullback of the diagonal map of (along a) is precisely given by

a:1l— f(X).

It follows that (F/a)*(f/X)*(A) = a, and we conclude that the geometric morphism
g = (f/X) o (F/a) satisfies the requirements of the proposition. O

This gives a correspondence between geometric morphisms g : F — £/X and
pairs (f,a), where f is a geometric morphism F — € and a : 1 — f*(X) is a map
in F. It remains to determine the maps (geometric transformations) g — ¢’ for two
geometric morphisms g,¢' : F — £/X.

Proposition 4. Let g,g' : F — £/X be two geometric morphisms, with g corre-
sponding to the pair (f,a) and g’ corresponding to the pair (f',a’), where f, f’ :
F — & are geometric morphisms and a : 1 — f*(X), a’ : 1 — (f)*(X) maps in F.
Fiz a natural transformation n : f* = (f')*. Then there is at most one natural
transformation 7 : g* = (¢')* such that 7z* = 1. Moreover, such a 7 exists if and
only if the diagram
It ()

commutes.

Proof. Let 77 : ¢* = (¢')* be a natural transformation such that f2* = n. Let
¢ : E — X be an object in £/X. We know that g*(¢) and (¢’)*(¢) can be
computed as the equalizers of respectively

FH(B) =3 f(E) x f*(X)

F(1xe)

and
(f)(E) ﬁ ()" (B) x (f)*(X).

In particular, there is a commutative diagram

g () —— [*(E)

ﬁwl J/ﬁrc*(E)
() (p) — (f)(E)
with the horizontal maps monomorphisms. By using that the lower horizontal map
is a monomorphism, we see that 7, is completely determined by 7, ). Moreover,

because nz* = n, we see that 7,-g) = g, and as a result it only depends on 7. So
7 is uniquely determined by 7.
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Further, if a natural transformation 7 exists such that nz* = 7, then we also have
a commuting diagram

fHB) —T sy f5(B) x f*(X)

ﬁmﬂE[L JﬁmﬂExX)

(f)"(E) (f)(E) x (f)(X).

with again 7,-z) = ng and further Nex(ExX) = NExx = NeT X Nx72. Recall
that m was our notation for the map to the terminal object. By considering the
special case where E is the terminal object in £, we get nxa = a’, which shows the
commutativity of the diagram in the statement.

It remains to show the converse statement that if xa = a’, then there exists a
natural transformation 7j such that 7z* = 7. Let ¢ : E — X be an object in £/X.
We construct 7j,, by via taking equalizers as follows:

1xa'm

g* () ———— (B )#&H ) % F5(X)
(¢)"(9) ——— (f)"(E) ﬁ (F)*(B) x (f/)(X).

To show that 7 defines a natural transformation, consider the diagram

1xam

9" () f(E) - £ fH(E) > fr(X)
i lnE i) lﬂXxE

(9")"(¢) (f)"(E) (f)"(E) x (f)"(X).

(f)"(1xe)

Ixam

N T e O
. N (E) : L () (E) x (f)(X

1xa'T

(f)"(1xe")
for a morphism ¢ : ¢ — ¢’ in £/X, with diagonal morphisms given from left to

right by g*(¢), f*(¥), f*(¢m x m2) for the upper row and by (¢)*(¥), (f')"(¥),
(f")*(¢pmy x mq) for the lower row.

To show that 7 is a natural transformation, or in other words that 7,/ g*(¢) =
(9")* ()7, it is enough to show that the following six equations hold:

[r(Wm x ) (1 x am) = (1 x am) f*(¢)

(f")" (i x m2)(1 x a'm) = (1 x a'm)(f')" ()
frm xm) f*(1x @) = f1(1x ) f* (@
(f)"(hmr x m2)(f)" (L x ) = (f)" (1 x ") (f')" ()
ve f*(¥) = (f')" (¥)ve
vErxx [1(m x ma) = (f')"(¥m1 X mo)vexx

corresponding to six commutative squares in the diagram. For the first equation, we
use that f*(¢m X mg) = f*(¢)m x ma (which holds because f* preserves products),
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and we compute
frpm x ma)(1 x am) = (f*()m1 x m2)(1 x am) = f* () X am = (1 x a7) f*(¢)).
The second equation is analogous. The third and the fourth equation follow from
(Ym x m)(1 x ) =9 x p =1 x P'th = (1 x o).

by applying f* resp. (f')*. The last two equations follow by naturality of n. This
shows that 7 is a natural transformation. d
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