GEOMETRIC MORPHISMS TO SLICE TOPOSES

JENS HEMELAER

We give a proof for a result from SGA4 sga72 that describes the geometric morphisms $g: \mathcal{F} \rightarrow \mathcal{E} / X$ in terms of pairs (f, a) where $f: \mathcal{F} \rightarrow \mathcal{E}$ is a geometric morphism and $a: 1 \rightarrow f^{*}(X)$ is a global element. This result appears as Proposition 5.12 in SGA4, Exposé IV, and the proof given here will be very similar to the proof in SGA4.

Throughout, we fix a Grothendieck topos \mathcal{E} with an object X in \mathcal{E}, and we will write

$$
x: \mathcal{E} / X \rightarrow \mathcal{E}
$$

for the projection geometric morphism associated to the slice topos \mathcal{E} / X. The goal is to determine the category of geometric morphisms $\operatorname{Geom}(\mathcal{F}, \mathcal{E} / X)$ for any Grothendieck topos \mathcal{F}, in terms of $\operatorname{Geom}(\mathcal{F}, \mathcal{E})$. We use the standard convention that a map of geometric morphisms $g \rightarrow g^{\prime}$ is given by a natural transformation $g^{*} \Rightarrow\left(g^{\prime}\right)^{*}$. Note that SGA4 uses the opposite convention. We will show that the functor

$$
\operatorname{Geom}(\mathcal{F}, \mathcal{E} / X) \longrightarrow \operatorname{Geom}(\mathcal{F}, \mathcal{E})
$$

induced by x is a discrete opfibration, corresponding to the copresheaf that sends f to $\operatorname{Hom}_{\mathcal{F}}\left(1, f^{*}(X)\right)$. In symbols:

$$
\begin{equation*}
\operatorname{Geom}(\mathcal{F}, \mathcal{E} / X) \simeq \int^{f \in \operatorname{Geom}(\mathcal{F}, \mathcal{E})} \operatorname{Hom}_{\mathcal{F}}\left(1, f^{*}(X)\right) \tag{1}
\end{equation*}
$$

Spelled out, this means that $\operatorname{Geom}(\mathcal{F}, \mathcal{E} / X)$ is equivalent to the category with

- as objects the pairs (f, a) with $f: \mathcal{F} \rightarrow \mathcal{E}$ a geometric morphism and $a: 1 \rightarrow f^{*}(X)$ a map in \mathcal{F};
- as morphisms $(f, a) \rightarrow\left(f^{\prime}, a^{\prime}\right)$ the natural transformations $\eta: f^{*} \Rightarrow\left(f^{\prime}\right)^{*}$ such that the diagram

commutes.
For a fixed geometric morphism $f: \mathcal{F} \rightarrow \mathcal{E}$ we denote by $\operatorname{Geom}_{\mathcal{E}}(\mathcal{F}, \mathcal{E} / X)$ the category of morphisms $\mathcal{F} \rightarrow \mathcal{E} / X$ relative over \mathcal{E}. The category $\operatorname{Geom}_{\mathcal{E}}(\mathcal{F}, \mathcal{E} / X)$ is precisely the fiber of the discrete opfibration $\operatorname{Geom}(\mathcal{F}, \mathcal{E} / X) \longrightarrow \operatorname{Geom}(\mathcal{F}, \mathcal{E})$ above f. It has as objects the morphisms $g: \mathcal{F} \rightarrow \mathcal{E} / X$ such that $x g \simeq f$, and as morphisms $g \rightarrow g^{\prime}$ the natural transformations $\eta: g^{*} \Rightarrow\left(g^{\prime}\right)^{*}$ such that $x \eta: f^{*} \Rightarrow f^{*}$ is the trivial natural transformation. From (1) it follows that

$$
\begin{equation*}
\operatorname{Geom}_{\mathcal{E}}(\mathcal{F}, \mathcal{E} / X) \simeq \operatorname{Hom}_{\mathcal{F}}\left(1, f^{*}(X)\right) \tag{2}
\end{equation*}
$$

[^0]by which we mean that $\operatorname{Geom}_{\mathcal{E}}(\mathcal{F}, \mathcal{E} / X)$ is the discrete category corresponding to the set $\operatorname{Hom}_{\mathcal{F}}\left(1, f^{*}(X)\right)$. In the special case where $\mathcal{F} \simeq \mathcal{E} / Y$ for some object Y in \mathcal{E}, and f is the projection geometric morphism $y: \mathcal{E} / Y \rightarrow \mathcal{E}$, we see that
$\operatorname{Geom}_{\mathcal{E}}(\mathcal{E} / Y, \mathcal{E} / X) \simeq \operatorname{Hom}_{\mathcal{E} / Y}\left(1, y^{*}(X)\right) \simeq \operatorname{Hom}_{\mathcal{E}}(y!(1), X) \simeq \operatorname{Hom}_{\mathcal{E}}(Y, X)$.
This result appears as Exercise 5.14 in SGA4, Exposé IV (as an application of 11). A similar, direct proof is given in the recent paper by Caramello and Zanfa CZ21, Lemma 6.1.2], where the result is put in a wider context.

Finding references or elegant proofs for $\operatorname{Geom}_{\mathcal{E}}(\mathcal{E} / Y, \mathcal{E} / X) \simeq \operatorname{Hom}_{\mathcal{E}}(Y, X)$ was the original motivation to look at the result discussed in this note. I thank Morgan Rogers and Steve Vickers for interesting discussions on this topic. I expect that there are other interesting proofs of $\operatorname{Geom}_{\mathcal{E}}(\mathcal{E} / Y, \mathcal{E} / X) \simeq \operatorname{Hom}_{\mathcal{E}}(Y, X)$; if you know any, please let me know.

1. The proof

For an object $\varphi: E \rightarrow X$ in \mathcal{E} / X, we consider the diagram

in \mathcal{E} / X. Our notations are as follows: we write π_{i} for the projection on the i th component, and for maps $f_{i}: Z \rightarrow Z_{i}$ with $i \in\{1,2, \ldots, n\}$ we write $f_{1} \times \cdots \times f_{n}$ for the corresponding map $Z \rightarrow Z_{1} \times \cdots \times Z_{n}$.

Lemma 1. Diagram (3) above is an equalizer.
Proof. Let $\psi: Z \rightarrow E \times X$ be a morphism in \mathcal{E} / X such that $\left(\pi_{1} \times \pi_{2} \times \pi_{2}\right) \psi=$ $\left(\pi_{1} \times \varphi \pi_{1} \times \pi_{2}\right) \psi$. This is the case precisely when $\pi_{2} \psi=\varphi \pi_{1} \psi$. This means that the map $\pi_{1} \psi: Z \rightarrow E$ satisfies $(1 \times \varphi) \pi_{1} \psi=\psi \times \varphi \psi$, so a lift $Z \rightarrow E$ exists. If $h: Z \rightarrow E$ is another map that makes the diagram

commute, then we see that $\pi_{1} \psi=\pi_{1}(1 \times \varphi) h=h$, so $h=\pi_{1} \psi$ is the unique lift.
Note that in this way we have written $\varphi: E \rightarrow X$ as an equalizer of two objects in the image of x^{*}. Further, note that the map $\pi_{1} \times \varphi \pi_{1} \times \pi_{2}$ is the image of $1 \times \varphi$ along x^{*}, while $\pi_{1} \times \pi_{2} \times \pi_{2}$ does not lie in the image of x^{*}. In more compact notation, we can say that φ is the equalizer of the diagram

$$
\begin{equation*}
x^{*}(E) \xrightarrow[x^{*}(1 \times \varphi)]{\pi_{1} \times \Delta \pi} x^{*}(E) \times x^{*}(X) \tag{4}
\end{equation*}
$$

where \times now denotes the product in $\mathcal{E} / X, \pi$ denotes the map to the terminal object, and $\Delta: 1 \rightarrow x^{*}(X)$ is the map in \mathcal{E} / X corresponding to the diagonal map $X \rightarrow X \times X$ (the terminal object 1 is given by the identity $X \rightarrow X$ and $x^{*}(X)$ is given by $\left.\pi_{2}: X \times X \rightarrow X\right)$.

Proposition 2. Let $g: \mathcal{F} \rightarrow \mathcal{E} / X$ be a geometric morphism and let $f: \mathcal{F} \rightarrow \mathcal{E}$ be the composition $f=x g$. Then g^{*} is completely determined by f^{*} and by the image of the map $\Delta: 1 \rightarrow x^{*}(X)$ in \mathcal{E} / X, as defined above.

Proof. For an object $\varphi: E \rightarrow X$ in \mathcal{E} / X, we can write φ as an equalizer as in diagram (4). Because $x g=f$ and g preserves finite products and equalizers, we then see that $g^{*}(\varphi)$ is the equalizer of

$$
f^{*}(E) \xrightarrow[f^{*}(1 \times \varphi)]{\stackrel{1 \times g^{*}(\Delta) \pi}{\longrightarrow}} f^{*}(E) \times f^{*}(X)
$$

which as promised only depends on f and $g^{*}(\Delta)$. Further, if there is another object $\varphi^{\prime}: E^{\prime} \rightarrow X$ and a morphism $\psi: E \rightarrow E^{\prime}$ in \mathcal{E} / X (which means that $\varphi^{\prime} \psi=\varphi$), then ψ arises from taking equalizers for the diagram

So $g^{*}(\psi)$ is the map arising from taking equalizers for the diagram

$$
\begin{aligned}
& f^{*}(E) \stackrel{1 \times g^{*}(\Delta) \pi}{f^{*}(1 \times \varphi)} f^{*}(E) \times f^{*}(X) \\
& f^{*}(\psi) \downarrow \\
& f^{*}\left(E^{\prime}\right) \stackrel{1 \times g^{*}(\Delta) \pi}{f^{*}\left(1 \times \varphi^{\prime}\right)} f^{*}\left(E^{\prime}\right) \times f^{*}(X) .
\end{aligned}
$$

This shows that also $g^{*}(\psi)$ depends only on f and $g^{*}(\Delta)$.
We conclude that the geometric morphism $g: \mathcal{F} \rightarrow \mathcal{E} / X$ is completely determined by the map $f: \mathcal{F} \rightarrow \mathcal{E}$ given by $f=x g$, together with a choice of map $a: 1 \rightarrow f^{*}(X)$ (namely $a=g^{*}(\Delta)$). It turns out that a converse holds as well:

Proposition 3. Fix a geometric morphism $f: \mathcal{F} \rightarrow \mathcal{E}$. Every choice of map $a: 1 \rightarrow f^{*}(X)$ is of the form $g^{*}(\Delta)$ for some geometric morphism $g: \mathcal{F} \rightarrow \mathcal{E}$ with $x g \simeq f$.

Proof. The geometric morphism $f: \mathcal{F} \rightarrow \mathcal{E}$ induces a geometric morphism (f / X) : $\mathcal{F} / f^{*}(X) \rightarrow \mathcal{E} / X$ that sends $\varphi: E \rightarrow X$ to $f^{*}(\varphi): f^{*}(E) \rightarrow f^{*}(X)$. The functor $(f / X)^{*}$ sends the map $\Delta: 1 \rightarrow x^{*}(X)$ to the map in $\mathcal{F} / f^{*}(X)$ corresponding to the diagonal map

Further, there is a geometric morphism $\mathcal{F} / a: \mathcal{F} \rightarrow \mathcal{F} / f^{*}(X)$ corresponding to $a: 1 \rightarrow f^{*}(X)$. Its inverse image functor $(\mathcal{F} / a)^{*}$ sends a map $\sigma: Y \rightarrow f^{*}(X)$ to
the pullback along a, as follows:

On morphims, $(\mathcal{F} / a)^{*}$ is similarly defined via the pullback construction. We now see that the pullback of the diagonal map of (5) (along a) is precisely given by

$$
a: 1 \rightarrow f^{*}(X)
$$

It follows that $(\mathcal{F} / a)^{*}(f / X)^{*}(\Delta)=a$, and we conclude that the geometric morphism $g=(f / X) \circ(\mathcal{F} / a)$ satisfies the requirements of the proposition.

This gives a correspondence between geometric morphisms $g: \mathcal{F} \rightarrow \mathcal{E} / X$ and pairs (f, a), where f is a geometric morphism $\mathcal{F} \rightarrow \mathcal{E}$ and $a: 1 \rightarrow f^{*}(X)$ is a map in \mathcal{F}. It remains to determine the maps (geometric transformations) $g \rightarrow g^{\prime}$ for two geometric morphisms $g, g^{\prime}: \mathcal{F} \rightarrow \mathcal{E} / X$.

Proposition 4. Let $g, g^{\prime}: \mathcal{F} \rightarrow \mathcal{E} / X$ be two geometric morphisms, with g corresponding to the pair (f, a) and g^{\prime} corresponding to the pair $\left(f^{\prime}, a^{\prime}\right)$, where f, f^{\prime} : $\mathcal{F} \rightarrow \mathcal{E}$ are geometric morphisms and $a: 1 \rightarrow f^{*}(X), a^{\prime}: 1 \rightarrow\left(f^{\prime}\right)^{*}(X)$ maps in \mathcal{F}.

Fix a natural transformation $\eta: f^{*} \Rightarrow\left(f^{\prime}\right)^{*}$. Then there is at most one natural transformation $\tilde{\eta}: g^{*} \Rightarrow\left(g^{\prime}\right)^{*}$ such that $\tilde{\eta} x^{*}=\eta$. Moreover, such a $\tilde{\eta}$ exists if and only if the diagram

commutes.
Proof. Let $\tilde{\eta}: g^{*} \Rightarrow\left(g^{\prime}\right)^{*}$ be a natural transformation such that $\tilde{\eta} x^{*}=\eta$. Let $\varphi: E \rightarrow X$ be an object in \mathcal{E} / X. We know that $g^{*}(\varphi)$ and $\left(g^{\prime}\right)^{*}(\varphi)$ can be computed as the equalizers of respectively

$$
f^{*}(E) \xrightarrow[f^{*}(1 \times \varphi)]{1 \times a \pi} f^{*}(E) \times f^{*}(X)
$$

and

$$
\left(f^{\prime}\right)^{*}(E) \xrightarrow[\left(f^{\prime}\right)^{*}(1 \times \varphi)]{\stackrel{1 \times a^{\prime} \pi}{\longrightarrow}}\left(f^{\prime}\right)^{*}(E) \times\left(f^{\prime}\right)^{*}(X)
$$

In particular, there is a commutative diagram

with the horizontal maps monomorphisms. By using that the lower horizontal map is a monomorphism, we see that $\tilde{\eta}_{\varphi}$ is completely determined by $\tilde{\eta}_{x^{*}(E)}$. Moreover, because $\tilde{\eta} x^{*}=\eta$, we see that $\tilde{\eta}_{x^{*}(E)}=\eta_{E}$, and as a result it only depends on η. So $\tilde{\eta}$ is uniquely determined by η.

Further, if a natural transformation $\tilde{\eta}$ exists such that $\tilde{\eta} x^{*}=\eta$, then we also have a commuting diagram

with again $\tilde{\eta}_{x^{*}(E)}=\eta_{E}$ and further $\tilde{\eta}_{x^{*}(E \times X)}=\eta_{E \times X}=\eta_{E} \pi_{1} \times \eta_{X} \pi_{2}$. Recall that π was our notation for the map to the terminal object. By considering the special case where E is the terminal object in \mathcal{E}, we get $\eta_{X} a=a^{\prime}$, which shows the commutativity of the diagram in the statement.

It remains to show the converse statement that if $\eta_{X} a=a^{\prime}$, then there exists a natural transformation $\tilde{\eta}$ such that $\tilde{\eta} x^{*}=\eta$. Let $\varphi: E \rightarrow X$ be an object in \mathcal{E} / X. We construct $\tilde{\eta}_{\varphi}$, by via taking equalizers as follows:

To show that $\tilde{\eta}$ defines a natural transformation, consider the diagram

for a morphism $\psi: \varphi \rightarrow \varphi^{\prime}$ in \mathcal{E} / X, with diagonal morphisms given from left to right by $g^{*}(\psi), f^{*}(\psi), f^{*}\left(\psi \pi_{1} \times \pi_{2}\right)$ for the upper row and by $\left(g^{\prime}\right)^{*}(\psi),\left(f^{\prime}\right)^{*}(\psi)$, $\left(f^{\prime}\right)^{*}\left(\psi \pi_{1} \times \pi_{2}\right)$ for the lower row.

To show that $\tilde{\eta}$ is a natural transformation, or in other words that $\tilde{\eta}_{\varphi^{\prime}} g^{*}(\psi)=$ $\left(g^{\prime}\right)^{*}(\psi) \tilde{\eta}_{\varphi}$, it is enough to show that the following six equations hold:

$$
\begin{aligned}
& f^{*}\left(\psi \pi_{1} \times \pi_{2}\right)(1 \times a \pi)=(1 \times a \pi) f^{*}(\psi) \\
&\left(f^{\prime}\right)^{*}\left(\psi \pi_{1} \times \pi_{2}\right)\left(1 \times a^{\prime} \pi\right)=\left(1 \times a^{\prime} \pi\right)\left(f^{\prime}\right)^{*}(\psi) \\
& f^{*}\left(\psi \pi_{1} \times \pi_{2}\right) f^{*}(1 \times \varphi)=f^{*}\left(1 \times \varphi^{\prime}\right) f^{*}(\psi) \\
&\left(f^{\prime}\right)^{*}\left(\psi \pi_{1} \times \pi_{2}\right)\left(f^{\prime}\right)^{*}(1 \times \varphi)=\left(f^{\prime}\right)^{*}\left(1 \times \varphi^{\prime}\right)\left(f^{\prime}\right)^{*}(\psi) \\
& \nu_{E^{\prime}} f^{*}(\psi)=\left(f^{\prime}\right)^{*}(\psi) \nu_{E} \\
& \nu_{E^{\prime} \times X} f^{*}\left(\psi \pi_{1} \times \pi_{2}\right)=\left(f^{\prime}\right)^{*}\left(\psi \pi_{1} \times \pi_{2}\right) \nu_{E \times X}
\end{aligned}
$$

corresponding to six commutative squares in the diagram. For the first equation, we use that $f^{*}\left(\psi \pi_{1} \times \pi_{2}\right)=f^{*}(\psi) \pi_{1} \times \pi_{2}$ (which holds because f^{*} preserves products),
and we compute

$$
f^{*}\left(\psi \pi_{1} \times \pi_{2}\right)(1 \times a \pi)=\left(f^{*}(\psi) \pi_{1} \times \pi_{2}\right)(1 \times a \pi)=f^{*}(\psi) \times a \pi=(1 \times a \pi) f^{*}(\psi)
$$

The second equation is analogous. The third and the fourth equation follow from

$$
\left(\psi \pi_{1} \times \pi_{2}\right)(1 \times \varphi)=\psi \times \varphi=\psi \times \varphi^{\prime} \psi=\left(1 \times \varphi^{\prime}\right) \psi
$$

by applying f^{*} resp. $\left(f^{\prime}\right)^{*}$. The last two equations follow by naturality of η. This shows that $\tilde{\eta}$ is a natural transformation.

References

[CZ21] Olivia Caramello and Riccardo Zanfa, Relative topos theory via stacks, preprint (2021), arXiv:2107.04417v1
[sga72] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.

Department of Mathematics, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp (Belgium), jens.hemelaer@uantwerpen.be

[^0]: Date: July 27, 2021.

