
GEOMETRIC MORPHISMS TO SLICE TOPOSES

JENS HEMELAER

We give a proof for a result from SGA4 [sga72] that describes the geometric
morphisms g : F → E/X in terms of pairs (f, a) where f : F → E is a geometric
morphism and a : 1→ f∗(X) is a global element. This result appears as Proposition
5.12 in SGA4, Exposé IV, and the proof given here will be very similar to the proof
in SGA4.

Throughout, we fix a Grothendieck topos E with an object X in E , and we will
write

x : E/X → E
for the projection geometric morphism associated to the slice topos E/X. The
goal is to determine the category of geometric morphisms Geom(F , E/X) for any
Grothendieck topos F , in terms of Geom(F , E). We use the standard convention
that a map of geometric morphisms g → g′ is given by a natural transformation
g∗ ⇒ (g′)∗. Note that SGA4 uses the opposite convention. We will show that the
functor

Geom(F , E/X) −→ Geom(F , E)

induced by x is a discrete opfibration, corresponding to the copresheaf that sends f
to HomF (1, f∗(X)). In symbols:

(1) Geom(F , E/X) '
∫ f∈Geom(F,E)

HomF (1, f∗(X)).

Spelled out, this means that Geom(F , E/X) is equivalent to the category with

• as objects the pairs (f, a) with f : F → E a geometric morphism and
a : 1→ f∗(X) a map in F ;
• as morphisms (f, a)→ (f ′, a′) the natural transformations η : f∗ ⇒ (f ′)∗

such that the diagram

1 f∗(X)

(f ′)∗(X)

a

a′
ηX

commutes.

For a fixed geometric morphism f : F → E we denote by GeomE(F , E/X) the
category of morphisms F → E/X relative over E . The category GeomE(F , E/X)
is precisely the fiber of the discrete opfibration Geom(F , E/X) −→ Geom(F , E)
above f . It has as objects the morphisms g : F → E/X such that xg ' f , and as
morphisms g → g′ the natural transformations η : g∗ ⇒ (g′)∗ such that xη : f∗ ⇒ f∗

is the trivial natural transformation. From (1) it follows that

(2) GeomE(F , E/X) ' HomF (1, f∗(X)),
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by which we mean that GeomE(F , E/X) is the discrete category corresponding to
the set HomF (1, f∗(X)). In the special case where F ' E/Y for some object Y in
E , and f is the projection geometric morphism y : E/Y → E , we see that

GeomE(E/Y, E/X) ' HomE/Y (1, y∗(X)) ' HomE(y!(1), X) ' HomE(Y,X).

This result appears as Exercise 5.14 in SGA4, Exposé IV (as an application of
(1)). A similar, direct proof is given in the recent paper by Caramello and Zanfa
[CZ21, Lemma 6.1.2], where the result is put in a wider context.

Finding references or elegant proofs for GeomE(E/Y, E/X) ' HomE(Y,X) was
the original motivation to look at the result discussed in this note. I thank Morgan
Rogers and Steve Vickers for interesting discussions on this topic. I expect that
there are other interesting proofs of GeomE(E/Y, E/X) ' HomE(Y,X); if you know
any, please let me know.

1. The proof

For an object ϕ : E → X in E/X, we consider the diagram

(3)

E E ×X E ×X ×X

X

1×ϕ

ϕ

π1×π2×π2

π1×ϕπ1×π2

π2 π3

.

in E/X. Our notations are as follows: we write πi for the projection on the ith
component, and for maps fi : Z → Zi with i ∈ {1, 2, . . . , n} we write f1 × · · · × fn
for the corresponding map Z → Z1 × · · · × Zn.

Lemma 1. Diagram (3) above is an equalizer.

Proof. Let ψ : Z → E × X be a morphism in E/X such that (π1 × π2 × π2)ψ =
(π1 × ϕπ1 × π2)ψ. This is the case precisely when π2ψ = ϕπ1ψ. This means that
the map π1ψ : Z → E satisfies (1 × ϕ)π1ψ = ψ × ϕψ, so a lift Z → E exists. If
h : Z → E is another map that makes the diagram

Z

E E ×X
h

ψ

1×ϕ

commute, then we see that π1ψ = π1(1×ϕ)h = h, so h = π1ψ is the unique lift. �

Note that in this way we have written ϕ : E → X as an equalizer of two objects
in the image of x∗. Further, note that the map π1 × ϕπ1 × π2 is the image of 1× ϕ
along x∗, while π1 × π2 × π2 does not lie in the image of x∗. In more compact
notation, we can say that ϕ is the equalizer of the diagram

(4) x∗(E) x∗(E)× x∗(X)
π1×∆π

x∗(1×ϕ)

where × now denotes the product in E/X, π denotes the map to the terminal
object, and ∆ : 1→ x∗(X) is the map in E/X corresponding to the diagonal map
X → X ×X (the terminal object 1 is given by the identity X → X and x∗(X) is
given by π2 : X ×X → X).
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Proposition 2. Let g : F → E/X be a geometric morphism and let f : F → E be
the composition f = xg. Then g∗ is completely determined by f∗ and by the image
of the map ∆ : 1→ x∗(X) in E/X, as defined above.

Proof. For an object ϕ : E → X in E/X, we can write ϕ as an equalizer as in
diagram (4). Because xg = f and g preserves finite products and equalizers, we
then see that g∗(ϕ) is the equalizer of

f∗(E) f∗(E)× f∗(X)
1×g∗(∆)π

f∗(1×ϕ)

which as promised only depends on f and g∗(∆). Further, if there is another object
ϕ′ : E′ → X and a morphism ψ : E → E′ in E/X (which means that ϕ′ψ = ϕ),
then ψ arises from taking equalizers for the diagram

x∗(E) x∗(E)× x∗(X)

x∗(E′) x∗(E′)× x∗(X).

π1×∆π

x∗(1×ϕ)

x∗(ψ) x∗(ψπ1×π2)

π1×∆π

x∗(1×ϕ′)

So g∗(ψ) is the map arising from taking equalizers for the diagram

f∗(E) f∗(E)× f∗(X)

f∗(E′) f∗(E′)× f∗(X).

1×g∗(∆)π

f∗(1×ϕ)

f∗(ψ) f∗(ψπ1×π2)

1×g∗(∆)π

f∗(1×ϕ′)

This shows that also g∗(ψ) depends only on f and g∗(∆). �

We conclude that the geometric morphism g : F → E/X is completely determined
by the map f : F → E given by f = xg, together with a choice of map a : 1→ f∗(X)
(namely a = g∗(∆)). It turns out that a converse holds as well:

Proposition 3. Fix a geometric morphism f : F → E. Every choice of map
a : 1→ f∗(X) is of the form g∗(∆) for some geometric morphism g : F → E with
xg ' f .

Proof. The geometric morphism f : F → E induces a geometric morphism (f/X) :
F/f∗(X) → E/X that sends ϕ : E → X to f∗(ϕ) : f∗(E) → f∗(X). The functor
(f/X)∗ sends the map ∆ : 1→ x∗(X) to the map in F/f∗(X) corresponding to the
diagonal map

(5)

f∗(X) f∗(X)× f∗(X)

f∗(X).

1×1

1
π2

Further, there is a geometric morphism F/a : F → F/f∗(X) corresponding to
a : 1 → f∗(X). Its inverse image functor (F/a)∗ sends a map σ : Y → f∗(X) to
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the pullback along a, as follows:

(F/a)∗(σ) Y

1 f∗(X).

σ

a

On morphims, (F/a)∗ is similarly defined via the pullback construction. We now
see that the pullback of the diagonal map of (5) (along a) is precisely given by

a : 1→ f∗(X).

It follows that (F/a)∗(f/X)∗(∆) = a, and we conclude that the geometric morphism
g = (f/X) ◦ (F/a) satisfies the requirements of the proposition. �

This gives a correspondence between geometric morphisms g : F → E/X and
pairs (f, a), where f is a geometric morphism F → E and a : 1→ f∗(X) is a map
in F . It remains to determine the maps (geometric transformations) g → g′ for two
geometric morphisms g, g′ : F → E/X.

Proposition 4. Let g, g′ : F → E/X be two geometric morphisms, with g corre-
sponding to the pair (f, a) and g′ corresponding to the pair (f ′, a′), where f, f ′ :
F → E are geometric morphisms and a : 1→ f∗(X), a′ : 1→ (f ′)∗(X) maps in F .

Fix a natural transformation η : f∗ ⇒ (f ′)∗. Then there is at most one natural
transformation η̃ : g∗ ⇒ (g′)∗ such that η̃x∗ = η. Moreover, such a η̃ exists if and
only if the diagram

1 f∗(X)

(f ′)∗(X)

a

a′
ηX

commutes.

Proof. Let η̃ : g∗ ⇒ (g′)∗ be a natural transformation such that η̃x∗ = η. Let
ϕ : E → X be an object in E/X. We know that g∗(ϕ) and (g′)∗(ϕ) can be
computed as the equalizers of respectively

f∗(E) f∗(E)× f∗(X)
1×aπ

f∗(1×ϕ)

and

(f ′)∗(E) (f ′)∗(E)× (f ′)∗(X).
1×a′π

(f ′)∗(1×ϕ)

In particular, there is a commutative diagram

g∗(ϕ) f∗(E)

(g′)∗(ϕ) (f ′)∗(E)

η̃ϕ η̃x∗(E)

with the horizontal maps monomorphisms. By using that the lower horizontal map
is a monomorphism, we see that η̃ϕ is completely determined by η̃x∗(E). Moreover,
because η̃x∗ = η, we see that η̃x∗(E) = ηE , and as a result it only depends on η. So
η̃ is uniquely determined by η.
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Further, if a natural transformation η̃ exists such that η̃x∗ = η, then we also have
a commuting diagram

f∗(E) f∗(E)× f∗(X)

(f ′)∗(E) (f ′)∗(E)× (f ′)∗(X).

1×aπ

η̃x∗(E) η̃x∗(E×X)

1×a′π

with again η̃x∗(E) = ηE and further η̃x∗(E×X) = ηE×X = ηEπ1 × ηXπ2. Recall
that π was our notation for the map to the terminal object. By considering the
special case where E is the terminal object in E , we get ηXa = a′, which shows the
commutativity of the diagram in the statement.

It remains to show the converse statement that if ηXa = a′, then there exists a
natural transformation η̃ such that η̃x∗ = η. Let ϕ : E → X be an object in E/X.
We construct η̃ϕ, by via taking equalizers as follows:

g∗(ϕ) f∗(E) f∗(E)× f∗(X)

(g′)∗(ϕ) (f ′)∗(E) (f ′)∗(E)× (f ′)∗(X).

η̃ϕ

1×aπ

f∗(1×ϕ)
ηE ηX×E

1×a′π

(f ′)∗(1×ϕ)

To show that η̃ defines a natural transformation, consider the diagram

g∗(ϕ) f∗(E) f∗(E)× f∗(X)

(g′)∗(ϕ) (f ′)∗(E) (f ′)∗(E)× (f ′)∗(X).

g∗(ϕ′) f∗(E′) f∗(E′)× f∗(X)

(g′)∗(ϕ′) (f ′)∗(E′) (f ′)∗(E′)× (f ′)∗(X).

η̃ϕ

1×aπ

f∗(1×ϕ)
ηE ηX×E

1×a′π

(f ′)∗(1×ϕ)

η̃ϕ′

1×aπ

f∗(1×ϕ′)
ηE′ ηX×E′

1×a′π

(f ′)∗(1×ϕ′)

for a morphism ψ : ϕ → ϕ′ in E/X, with diagonal morphisms given from left to
right by g∗(ψ), f∗(ψ), f∗(ψπ1 × π2) for the upper row and by (g′)∗(ψ), (f ′)∗(ψ),
(f ′)∗(ψπ1 × π2) for the lower row.

To show that η̃ is a natural transformation, or in other words that η̃ϕ′g
∗(ψ) =

(g′)∗(ψ)η̃ϕ, it is enough to show that the following six equations hold:

f∗(ψπ1 × π2)(1× aπ) = (1× aπ)f∗(ψ)

(f ′)∗(ψπ1 × π2)(1× a′π) = (1× a′π)(f ′)∗(ψ)

f∗(ψπ1 × π2)f∗(1× ϕ) = f∗(1× ϕ′)f∗(ψ)

(f ′)∗(ψπ1 × π2)(f ′)∗(1× ϕ) = (f ′)∗(1× ϕ′)(f ′)∗(ψ)

νE′f
∗(ψ) = (f ′)∗(ψ)νE

νE′×Xf
∗(ψπ1 × π2) = (f ′)∗(ψπ1 × π2)νE×X

corresponding to six commutative squares in the diagram. For the first equation, we
use that f∗(ψπ1 × π2) = f∗(ψ)π1 × π2 (which holds because f∗ preserves products),
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and we compute

f∗(ψπ1 × π2)(1× aπ) = (f∗(ψ)π1 × π2)(1× aπ) = f∗(ψ)× aπ = (1× aπ)f∗(ψ).

The second equation is analogous. The third and the fourth equation follow from

(ψπ1 × π2)(1× ϕ) = ψ × ϕ = ψ × ϕ′ψ = (1× ϕ′)ψ.
by applying f∗ resp. (f ′)∗. The last two equations follow by naturality of η. This
shows that η̃ is a natural transformation. �
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