GEOMETRIC MORPHISMS TO SLICE TOPOSES

JENS HEMELAER

We give a proof for a result from SGA4 [sga72] that describes the geometric morphisms $g: \mathcal{F} \to \mathcal{E}/X$ in terms of pairs (f, a) where $f: \mathcal{F} \to \mathcal{E}$ is a geometric morphism and $a: 1 \to f^*(X)$ is a global element. This result appears as Proposition 5.12 in SGA4, Exposé IV, and the proof given here will be very similar to the proof in SGA4.

Throughout, we fix a Grothendieck topos \mathcal{E} with an object X in \mathcal{E} , and we will write

$$x: \mathcal{E}/X \to \mathcal{E}$$

for the projection geometric morphism associated to the slice topos \mathcal{E}/X . The goal is to determine the category of geometric morphisms $\operatorname{Geom}(\mathcal{F}, \mathcal{E}/X)$ for any Grothendieck topos \mathcal{F} , in terms of $\operatorname{Geom}(\mathcal{F}, \mathcal{E})$. We use the standard convention that a map of geometric morphisms $g \to g'$ is given by a natural transformation $g^* \Rightarrow (g')^*$. Note that SGA4 uses the opposite convention. We will show that the functor

$$\operatorname{\mathbf{Geom}}(\mathcal{F}, \mathcal{E}/X) \longrightarrow \operatorname{\mathbf{Geom}}(\mathcal{F}, \mathcal{E})$$

induced by x is a discrete opfibration, corresponding to the copresheaf that sends f to Hom_{\mathcal{F}}(1, f^{*}(X)). In symbols:

(1)
$$\operatorname{\mathbf{Geom}}(\mathcal{F}, \mathcal{E}/X) \simeq \int^{f \in \operatorname{\mathbf{Geom}}(\mathcal{F}, \mathcal{E})} \operatorname{Hom}_{\mathcal{F}}(1, f^*(X))$$

Spelled out, this means that $\mathbf{Geom}(\mathcal{F}, \mathcal{E}/X)$ is equivalent to the category with

- as objects the pairs (f, a) with $f : \mathcal{F} \to \mathcal{E}$ a geometric morphism and $a : 1 \to f^*(X)$ a map in \mathcal{F} ;
- as morphisms $(f, a) \to (f', a')$ the natural transformations $\eta : f^* \Rightarrow (f')^*$ such that the diagram

commutes.

For a fixed geometric morphism $f: \mathcal{F} \to \mathcal{E}$ we denote by $\operatorname{\mathbf{Geom}}_{\mathcal{E}}(\mathcal{F}, \mathcal{E}/X)$ the category of morphisms $\mathcal{F} \to \mathcal{E}/X$ relative over \mathcal{E} . The category $\operatorname{\mathbf{Geom}}_{\mathcal{E}}(\mathcal{F}, \mathcal{E}/X)$ is precisely the fiber of the discrete opfibration $\operatorname{\mathbf{Geom}}(\mathcal{F}, \mathcal{E}/X) \longrightarrow \operatorname{\mathbf{Geom}}(\mathcal{F}, \mathcal{E})$ above f. It has as objects the morphisms $g: \mathcal{F} \to \mathcal{E}/X$ such that $xg \simeq f$, and as morphisms $g \to g'$ the natural transformations $\eta: g^* \Rightarrow (g')^*$ such that $x\eta: f^* \Rightarrow f^*$ is the trivial natural transformation. From (1) it follows that

(2)
$$\operatorname{Geom}_{\mathcal{E}}(\mathcal{F}, \mathcal{E}/X) \simeq \operatorname{Hom}_{\mathcal{F}}(1, f^*(X)),$$

Date: July 27, 2021.

JENS HEMELAER

by which we mean that $\operatorname{Geom}_{\mathcal{E}}(\mathcal{F}, \mathcal{E}/X)$ is the discrete category corresponding to the set $\operatorname{Hom}_{\mathcal{F}}(1, f^*(X))$. In the special case where $\mathcal{F} \simeq \mathcal{E}/Y$ for some object Y in \mathcal{E} , and f is the projection geometric morphism $y: \mathcal{E}/Y \to \mathcal{E}$, we see that

 $\operatorname{\mathbf{Geom}}_{\operatorname{\mathcal{E}}}(\operatorname{\mathcal{E}}/Y, \operatorname{\mathcal{E}}/X) \simeq \operatorname{Hom}_{\operatorname{\mathcal{E}}/Y}(1, y^*(X)) \simeq \operatorname{Hom}_{\operatorname{\mathcal{E}}}(y_!(1), X) \simeq \operatorname{Hom}_{\operatorname{\mathcal{E}}}(Y, X).$

This result appears as Exercise 5.14 in SGA4, Exposé IV (as an application of (1)). A similar, direct proof is given in the recent paper by Caramello and Zanfa [CZ21, Lemma 6.1.2], where the result is put in a wider context.

Finding references or elegant proofs for $\operatorname{\mathbf{Geom}}_{\mathcal{E}}(\mathcal{E}/Y, \mathcal{E}/X) \simeq \operatorname{Hom}_{\mathcal{E}}(Y, X)$ was the original motivation to look at the result discussed in this note. I thank Morgan Rogers and Steve Vickers for interesting discussions on this topic. I expect that there are other interesting proofs of $\operatorname{\mathbf{Geom}}_{\mathcal{E}}(\mathcal{E}/Y, \mathcal{E}/X) \simeq \operatorname{Hom}_{\mathcal{E}}(Y, X)$; if you know any, please let me know.

1. The proof

For an object $\varphi: E \to X$ in \mathcal{E}/X , we consider the diagram

in \mathcal{E}/X . Our notations are as follows: we write π_i for the projection on the *i*th component, and for maps $f_i : Z \to Z_i$ with $i \in \{1, 2, ..., n\}$ we write $f_1 \times \cdots \times f_n$ for the corresponding map $Z \to Z_1 \times \cdots \times Z_n$.

Lemma 1. Diagram (3) above is an equalizer.

Proof. Let $\psi : Z \to E \times X$ be a morphism in \mathcal{E}/X such that $(\pi_1 \times \pi_2 \times \pi_2)\psi = (\pi_1 \times \varphi \pi_1 \times \pi_2)\psi$. This is the case precisely when $\pi_2 \psi = \varphi \pi_1 \psi$. This means that the map $\pi_1 \psi : Z \to E$ satisfies $(1 \times \varphi)\pi_1 \psi = \psi \times \varphi \psi$, so a lift $Z \to E$ exists. If $h: Z \to E$ is another map that makes the diagram

commute, then we see that $\pi_1 \psi = \pi_1 (1 \times \varphi) h = h$, so $h = \pi_1 \psi$ is the unique lift. \Box

Note that in this way we have written $\varphi : E \to X$ as an equalizer of two objects in the image of x^* . Further, note that the map $\pi_1 \times \varphi \pi_1 \times \pi_2$ is the image of $1 \times \varphi$ along x^* , while $\pi_1 \times \pi_2 \times \pi_2$ does not lie in the image of x^* . In more compact notation, we can say that φ is the equalizer of the diagram

(4)
$$x^*(E) \xrightarrow[x^*(1\times\varphi)]{\pi_1 \times \Delta \pi} x^*(E) \times x^*(X)$$

where \times now denotes the product in \mathcal{E}/X , π denotes the map to the terminal object, and $\Delta : 1 \to x^*(X)$ is the map in \mathcal{E}/X corresponding to the diagonal map $X \to X \times X$ (the terminal object 1 is given by the identity $X \to X$ and $x^*(X)$ is given by $\pi_2 : X \times X \to X$).

Proposition 2. Let $g: \mathcal{F} \to \mathcal{E}/X$ be a geometric morphism and let $f: \mathcal{F} \to \mathcal{E}$ be the composition f = xg. Then g^* is completely determined by f^* and by the image of the map $\Delta: 1 \to x^*(X)$ in \mathcal{E}/X , as defined above.

Proof. For an object $\varphi : E \to X$ in \mathcal{E}/X , we can write φ as an equalizer as in diagram (4). Because xg = f and g preserves finite products and equalizers, we then see that $g^*(\varphi)$ is the equalizer of

$$f^*(E) \xrightarrow[f^*(1 \times \varphi)]{1 \times g^*(\Delta) \pi} f^*(E) \times f^*(X)$$

which as promised only depends on f and $g^*(\Delta)$. Further, if there is another object $\varphi' : E' \to X$ and a morphism $\psi : E \to E'$ in \mathcal{E}/X (which means that $\varphi'\psi = \varphi$), then ψ arises from taking equalizers for the diagram

$$\begin{array}{cccc}
x^{*}(E) & \xrightarrow{\pi_{1} \times \Delta \pi} & x^{*}(E) \times x^{*}(X) \\
\xrightarrow{x^{*}(\psi)} & & \downarrow x^{*}(\psi \pi_{1} \times \pi_{2}) \\
x^{*}(E') & \xrightarrow{\pi_{1} \times \Delta \pi} & x^{*}(E') \times x^{*}(X).
\end{array}$$

So $g^*(\psi)$ is the map arising from taking equalizers for the diagram

$$\begin{array}{cccc}
f^{*}(E) & \xrightarrow{1 \times g^{*}(\Delta)\pi} & f^{*}(E) \times f^{*}(X) \\
& & & \downarrow f^{*}(\psi) \downarrow & & \downarrow f^{*}(\psi\pi_{1} \times \pi_{2}) \\
f^{*}(E') & \xrightarrow{1 \times g^{*}(\Delta)\pi} & f^{*}(E') \times f^{*}(X).
\end{array}$$

This shows that also $g^*(\psi)$ depends only on f and $g^*(\Delta)$.

We conclude that the geometric morphism $g: \mathcal{F} \to \mathcal{E}/X$ is completely determined by the map $f: \mathcal{F} \to \mathcal{E}$ given by f = xg, together with a choice of map $a: 1 \to f^*(X)$ (namely $a = g^*(\Delta)$). It turns out that a converse holds as well:

Proposition 3. Fix a geometric morphism $f : \mathcal{F} \to \mathcal{E}$. Every choice of map $a : 1 \to f^*(X)$ is of the form $g^*(\Delta)$ for some geometric morphism $g : \mathcal{F} \to \mathcal{E}$ with $xg \simeq f$.

Proof. The geometric morphism $f: \mathcal{F} \to \mathcal{E}$ induces a geometric morphism $(f/X): \mathcal{F}/f^*(X) \to \mathcal{E}/X$ that sends $\varphi: E \to X$ to $f^*(\varphi): f^*(E) \to f^*(X)$. The functor $(f/X)^*$ sends the map $\Delta: 1 \to x^*(X)$ to the map in $\mathcal{F}/f^*(X)$ corresponding to the diagonal map

Further, there is a geometric morphism $\mathcal{F}/a : \mathcal{F} \to \mathcal{F}/f^*(X)$ corresponding to $a: 1 \to f^*(X)$. Its inverse image functor $(\mathcal{F}/a)^*$ sends a map $\sigma: Y \to f^*(X)$ to

the pullback along a, as follows:

On morphims, $(\mathcal{F}/a)^*$ is similarly defined via the pullback construction. We now see that the pullback of the diagonal map of (5) (along a) is precisely given by

$$a: 1 \to f^*(X)$$

It follows that $(\mathcal{F}/a)^*(f/X)^*(\Delta) = a$, and we conclude that the geometric morphism $g = (f/X) \circ (\mathcal{F}/a)$ satisfies the requirements of the proposition. \Box

This gives a correspondence between geometric morphisms $g: \mathcal{F} \to \mathcal{E}/X$ and pairs (f, a), where f is a geometric morphism $\mathcal{F} \to \mathcal{E}$ and $a: 1 \to f^*(X)$ is a map in \mathcal{F} . It remains to determine the maps (geometric transformations) $g \to g'$ for two geometric morphisms $g, g': \mathcal{F} \to \mathcal{E}/X$.

Proposition 4. Let $g, g' : \mathcal{F} \to \mathcal{E}/X$ be two geometric morphisms, with g corresponding to the pair (f, a) and g' corresponding to the pair (f', a'), where $f, f' : \mathcal{F} \to \mathcal{E}$ are geometric morphisms and $a : 1 \to f^*(X)$, $a' : 1 \to (f')^*(X)$ maps in \mathcal{F} .

Fix a natural transformation $\eta : f^* \Rightarrow (f')^*$. Then there is at most one natural transformation $\tilde{\eta} : g^* \Rightarrow (g')^*$ such that $\tilde{\eta}x^* = \eta$. Moreover, such a $\tilde{\eta}$ exists if and only if the diagram

commutes.

Proof. Let $\tilde{\eta} : g^* \Rightarrow (g')^*$ be a natural transformation such that $\tilde{\eta}x^* = \eta$. Let $\varphi : E \to X$ be an object in \mathcal{E}/X . We know that $g^*(\varphi)$ and $(g')^*(\varphi)$ can be computed as the equalizers of respectively

$$f^*(E) \xrightarrow[f^*(1\times\varphi)]{1\times a\pi} f^*(E) \times f^*(X)$$

and

$$(f')^*(E) \xrightarrow[(f')^*(1 \times \varphi)]{} (f')^*(E) \times (f')^*(X).$$

In particular, there is a commutative diagram

$$g^{*}(\varphi) \longrightarrow f^{*}(E)$$

$$\tilde{\eta}_{\varphi} \downarrow \qquad \qquad \qquad \downarrow \tilde{\eta}_{x^{*}(E)}$$

$$(g')^{*}(\varphi) \longrightarrow (f')^{*}(E)$$

with the horizontal maps monomorphisms. By using that the lower horizontal map is a monomorphism, we see that $\tilde{\eta}_{\varphi}$ is completely determined by $\tilde{\eta}_{x^*(E)}$. Moreover, because $\tilde{\eta}x^* = \eta$, we see that $\tilde{\eta}_{x^*(E)} = \eta_E$, and as a result it only depends on η . So $\tilde{\eta}$ is uniquely determined by η .

4

Further, if a natural transformation $\tilde{\eta}$ exists such that $\tilde{\eta}x^* = \eta$, then we also have a commuting diagram

$$\begin{array}{cccc}
f^*(E) & \xrightarrow{1 \times a\pi} & f^*(E) \times f^*(X) \\
\tilde{\eta}_{x^*(E)} & & & & \downarrow \tilde{\eta}_{x^*(E \times X)} \\
(f')^*(E) & \xrightarrow{1 \times a'\pi} & (f')^*(E) \times (f')^*(X).
\end{array}$$

with again $\tilde{\eta}_{x^*(E)} = \eta_E$ and further $\tilde{\eta}_{x^*(E \times X)} = \eta_{E \times X} = \eta_E \pi_1 \times \eta_X \pi_2$. Recall that π was our notation for the map to the terminal object. By considering the special case where E is the terminal object in \mathcal{E} , we get $\eta_X a = a'$, which shows the commutativity of the diagram in the statement.

It remains to show the converse statement that if $\eta_X a = a'$, then there exists a natural transformation $\tilde{\eta}$ such that $\tilde{\eta}x^* = \eta$. Let $\varphi : E \to X$ be an object in \mathcal{E}/X . We construct $\tilde{\eta}_{\varphi}$, by via taking equalizers as follows:

To show that $\tilde{\eta}$ defines a natural transformation, consider the diagram

for a morphism $\psi: \varphi \to \varphi'$ in \mathcal{E}/X , with diagonal morphisms given from left to right by $g^*(\psi)$, $f^*(\psi)$, $f^*(\psi\pi_1 \times \pi_2)$ for the upper row and by $(g')^*(\psi)$, $(f')^*(\psi)$, $(f')^*(\psi\pi_1 \times \pi_2)$ for the lower row.

To show that $\tilde{\eta}$ is a natural transformation, or in other words that $\tilde{\eta}_{\varphi'}g^*(\psi) = (g')^*(\psi)\tilde{\eta}_{\varphi}$, it is enough to show that the following six equations hold:

$$f^{*}(\psi\pi_{1} \times \pi_{2})(1 \times a\pi) = (1 \times a\pi)f^{*}(\psi)$$

$$(f')^{*}(\psi\pi_{1} \times \pi_{2})(1 \times a'\pi) = (1 \times a'\pi)(f')^{*}(\psi)$$

$$f^{*}(\psi\pi_{1} \times \pi_{2})f^{*}(1 \times \varphi) = f^{*}(1 \times \varphi')f^{*}(\psi)$$

$$(f')^{*}(\psi\pi_{1} \times \pi_{2})(f')^{*}(1 \times \varphi) = (f')^{*}(1 \times \varphi')(f')^{*}(\psi)$$

$$\nu_{E'}f^{*}(\psi) = (f')^{*}(\psi)\nu_{E}$$

$$\nu_{E' \times X}f^{*}(\psi\pi_{1} \times \pi_{2}) = (f')^{*}(\psi\pi_{1} \times \pi_{2})\nu_{E \times X}$$

corresponding to six commutative squares in the diagram. For the first equation, we use that $f^*(\psi \pi_1 \times \pi_2) = f^*(\psi) \pi_1 \times \pi_2$ (which holds because f^* preserves products),

JENS HEMELAER

and we compute

 $f^*(\psi \pi_1 \times \pi_2)(1 \times a\pi) = (f^*(\psi)\pi_1 \times \pi_2)(1 \times a\pi) = f^*(\psi) \times a\pi = (1 \times a\pi)f^*(\psi).$ The second equation is analogous. The third and the fourth equation follow from

$$(\psi \pi_1 \times \pi_2)(1 \times \varphi) = \psi \times \varphi = \psi \times \varphi' \psi = (1 \times \varphi')\psi.$$

by applying f^* resp. $(f')^*$. The last two equations follow by naturality of η . This shows that $\tilde{\eta}$ is a natural transformation.

References

- [CZ21] Olivia Caramello and Riccardo Zanfa, Relative topos theory via stacks, preprint (2021), arXiv:2107.04417v1.
- [sga72] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ANTWERP, MIDDELHEIMLAAN 1, B-2020 ANTWERP (BELGIUM), jens.hemelaer@uantwerpen.be

 $\mathbf{6}$