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2/48



Section 1

Étale geometric morphisms and complete spreads
(joint work with Morgan Rogers)
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Local homeomorphisms

A sheaf F on a topological space X can be equivalently described by
a local homeomorphism E → X .

Recall that f is a local homeomorphism iff there is an open covering
{Ui}i∈I of E such that f |Ui is an homeomorphism onto an open set
for all i ∈ I.

We use the terminology étale, rather than local homeomorphism,
and call E the étale space associated to F .
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Local homeomorphisms
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Local homeomorphisms

This gives a geometric interpretation to an object of Sh(X ).

We can take this a little further, and think of F as an étale
geometric morphism π : Sh(E )→ Sh(X ).

Here the étale geometric morphisms to Sh(X ) are precisely the
geometric morphisms induced by local homeomorphisms.

But there is an alternative characterization that can be extended to
other toposes. . .

6/48



Fundamental theorem of topos theory

Theorem
If E is a topos and X is an object in E , then the comma category
E/X is a topos as well.

The category E/X has as objects the maps Y → X in E , and as
morphisms the morphisms Y → Y ′ in E such that the diagram

Y Y ′

X

commutes.

7/48



Étale geometric morphisms

Definition
A geometric morphism f : F → E is étale if and only if there is an
object X in E and an equivalence ξ : F → E/X such that the
diagram

F E/X

E

ξ

f πX

commutes, with πX : E/X → E the geometric morphism such that
π∗X (A) ' X × A.
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Étale geometric morphisms

By definition, there is a bijective correspondence

{Objects of E} ↔
{

Étale geometric morphisms F → E .
}

This extends to an equivalence of categories:

E ' Toposét
E .
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Presheaves on a monoid

We now look at the topos PSh(N), the topos of presheaves on the
monoid N.

We can identify PSh(N) with the category of right N-sets.

So étale toposes over PSh(N) correspond to right N-sets. How can
we draw this?
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Étale toposes over PSh(M)

Take N = {0, 1, 2, . . . } under addition.

The base space is the terminal object:

An étale topos over it is for example:
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More formally. . .

Definition (Category of elements)
For N a monoid and X a right N-set,

∫
N X is the category with

I as objects the elements of X ;
I as morphisms b → a the elements n ∈ N such that an = b.

So morphisms are of the form an n−→ a.
Further, there is a natural projection

∫
N X → N.

For every n ∈ N and every a ∈ X , there is a unique lift b n→ a.
So
∫

N X −→ N is a discrete fibration and every discrete fibration is
of this form.
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From discrete fibrations to étale maps

It turns out that the étale geometric morphism

f : PSh(N)/X −→ PSh(N)

agrees with the geometric morphism

PSh(
∫

N
X ) −→ PSh(N)

induced by the projection functor
∫

N X −→ N.
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The Root topos

What happens if we take X = N, with right N-action given by
multiplication?
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The Root topos

The Root topos (Connes–Consani, 2019) associated to a monoid N
is the topos

Root(N) ' PSh(
∫

N
N).

If N is left cancellative, then Root(N) is equivalent to a topos of
sheaves on a topological space.
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The Arithmetic Site
If we take N = N×+ = {1, 2, 3, . . . } as monoid under multiplication,
then PSh(N) is the underlying topos of the Arithmetic Site by
Connes and Consani.

In this case
∫

N N is the category with the nonzero natural numbers
as objects, and a unique morphism m→ n whenever n divides m.

This is Conway’s big cell, appearing in “Covers of the Arithmetic
Site” by Le Bruyn.

6

2 3

1
16/48



Visualization big cell
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Wait, what about left N-sets?

Étale geometric morphisms to PSh(N) correspond to right N-sets.
What about left N-sets?

Is there a dual to the notion of étale geometric morphism?

Answer. Yes! (Bunge–Funk)
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Spreads

Let F , E be (Grothendieck) toposes.

Definition (Bunge–Funk, special case)
A geometric morphism f : F → E is a spread if the complemented
subobjects of objects of the form f ∗(X ) give a generating family for
F .

This is a generalization of inclusions.

Example. If Y = {1, 1/2, 1/3, . . . } ∪ {0}, then the subset Y ⊆ R
induces a spread, for the subspace topology and for the discrete
topology on Y .
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Spreads
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Complete geometric morphisms

Let F , E be (Grothendieck) toposes, with F locally connected.

Definition (Bunge–Funk, special case)
For a geometric morphism f : F → E , take a site (C, J) for E .
Consider the category D with as objects the pairs (C , c) for C in C
and c ∈ f ∗(C) a component, and as morphisms (C ′, c ′)→ (C , c)
the morphisms C → C ′ that respect the choice of component.
We say that f is complete if the following holds:
if S = {(Ci , ci )→ (C , c)}i∈I is a sieve such that the ci cover c in F ,
there is a covering sieve R in C such that (C ′, c ′)→ (C , c) is in S
for all a : C ′ → C in R and all possible choices of c ′.

Informally, a covering of f −1(U) comes from a covering on U.
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Complete spreads
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Spread completion

Theorem (Bunge–Funk)
Every geometric morphism with locally connected domain has a
factorization as a pure geometric morphism followed by a complete
spread. In particular, a spread factorizes as a pure spread followed
by a complete spread.
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Distributions

If étale geometric morphisms correspond to objects of the topos,
what do complete spreads correspond to?

Definition (Lawvere)
A distribution is a colimit-preserving functor E → Sets.

Note that an object of E is the same as a colimit-preserving functor
Sets→ E , so distributions are dual to objects.

Theorem (Bunge–Funk)
There is a correspondence between distributions on E and complete
spreads with E as codomain (and locally connected domain).
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Distributions for presheaves on a monoid

For E = PSh(C), distributions correspond to functors

C → Sets.

In particular, for E = PSh(M), distributions correspond to left
M-sets.

What is the associated complete spread?
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Distributions for presheaves on a monoid

Definition (Category of elements, dual version)
For N a monoid and Y a left N-set,

∫ N Y is the category with
I as objects the elements of Y ;
I as morphisms a→ b the elements n ∈ N such that na = b.

So morphisms are of the form a n−→ na.
Further, there is a natural projection

∫ N Y → N.

For every n ∈ N and every a ∈ X , there is a unique lift a n→ na.
So
∫ NY −→ N is a discrete opfibration and every discrete

opfibration is of this form.
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Distributions for presheaves on a monoid

The complete spread associated to the left N-set Y , is then

PSh(
∫ N

Y ) −→ PSh(N)

induced by the projection functor
∫ NY −→ N.

Example. We can define a coRoot topos, dual to the Root
construction by Connes–Consani.

coRoot(N) ' PSh(
∫ N

N)
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Over-toposes at models

What are the points of PSh(
∫ NY )? Use the factorization:

The points of PSh(N) are precisely the flat left N-sets. It then
follows by the results of Bunge–Funk that the points of PSh(

∫ NY )
are the flat left N-sets together with a morphism of left N-sets
A→ Y .
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Covering maps
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Covering maps

In our situation, if a geometric morphism is both a complete spread
and étale, then it is a covering map.

F PSh(H)

E PSh(π1(E))

f

This works for E ' PSh(M) with M a monoid (Bunge–Funk), or
E ' Sh(X ) for X a (Hausdorff, second countable) connected
topological manifold (Funk–Tymchatyn).
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Fundamental group of a monoid

In PSh(M), the locally constant objects are precisely the right
N-sets on which N acts by bijections.

The full subcategory on the locally constant objects is again a topos,
and it is equivalent to PSh(G) with G the groupification of N.

If X is a locally constant right N-set, then we can define a left
N-action on X as well, as multiplication on the right by the inverse.
Further, we get ∫

N
X '

∫ N
X

which shows how the complete spread and étale picture coincide.
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Classifying étale geometric morphisms

Let N be a monoid and X a right N-set. Let
PSh(

∫
N X ) −→ PSh(N) be the corresponding étale geometric

morphism.

When is PSh(
∫

N X ) again of the form PSh(M) for some monoid M?

Enough that there is an element x ∈ X such that for each y ∈ X
there is some u ∈ Nn such that xu = y .

In this case PSh(
∫

N X ) ' PSh(Nx ) for Nx = {n ∈ N : xn = x}.
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Classifying complete spreads

Let N be a monoid and Y a left N-set. Let
PSh(

∫ NY ) −→ PSh(N) be the corresponding complete spread.

When is PSh(
∫ NY ) again of the form PSh(M) for some monoid M?

Enough that there is an element y ∈ Y such that for each x ∈ Y
there is some v ∈ No such that y = vx .

In this case PSh(
∫ N Y ) ' PSh(Ny ) for Ny = {n ∈ N : ny = y}.
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Detecting étale geometric morphisms

Theorem (H, Rogers)
Let φ : M → N be a monoid map. Then the induced geometric
morphism PSh(M)→ PSh(N) is étale if and only if

1. φ is injective;
2. if a ∈ φ(M) and ab ∈ φ(M) then b ∈ φ(M);
3. for every n ∈ N there is some u ∈ Nn such that nu ∈ φ(M).

Example. φ : N→ Zp, n 7→ pn.
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Detecting complete spreads

Theorem (H, Rogers)
Let φ : M → N be a monoid map. Then the induced geometric
morphism PSh(M)→ PSh(N) is a complete spread if and only if

1. φ is injective;
2. if b ∈ φ(M) and ab ∈ φ(M) then a ∈ φ(M);
3. for every n ∈ N there is some v ∈ No such that vn ∈ φ(M).

Example. φ : N→ Zp, n 7→ pn.
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Section 2

Arithmetic toposes for maximal orders
(joint work with Aurélien Sagnier)
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The Arithmetic Site

In their approach to the Riemann Hypothesis, Connes and Consani
introduced in 2014 the Arithmetic Site: the topos PSh(N×+)
equipped with a certain sheaf of semirings.

The sheaf of semirings has an essential role, but the topos PSh(N×+)
is itself already interesting. For example, it was computed by Connes
and Consani that the points of this topos are classified up to
isomorphism by the double quotient

Q∗\Af
Q/Ẑ∗

with Ẑ =
∏

p Zp the profinite integers and Af
Q = Ẑ⊗Q the finite

adeles.
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Maximal orders

Take R a Dedekind domain with as field of fractions a global field K .

A maximal order over R is an R-algebra Λ such that Λ is finitely
generated torsionfree over R and Σ = Λ⊗R K is a central simple
algebra over K .

Examples. Z, Mn(Z), Fp[t], Mn(Fp[t]), Z[i ], HZ, with

HZ = {a + bi + cj + dk : a, b, c, d ∈ Z or a, b, c, d ∈ 1
2 + Z}.

We write Λns = Λ ∩ Σ∗.
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Maximal orders

Can we associate an Arithmetic Site to maximal orders?

As an underlying topos, is it a good idea to take PSh(Λns) or do we
need a different topos?

What is the right structure sheaf of semirings? Do we get a spectral
interpretation of the zeta function of Λ in topos theoretic terms?
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Recovering PSh(N×+)

If we are being precise, then the Arithmetic Site will not be a special
case.

The closest approximation to PSh(N×+) is PSh(Zns). How do we
recover the topos PSh(N×+)?

Answer. We take a look at the following Zns-set X :
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Recovering PSh(N×+)

For this Zns-set, we have
∫
Zns X '

∫ Zns
X ' N×+.

We get that PSh(N×+) is a two-fold covering space of PSh(Zns).
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More covering spaces?

Now take a maximal order Λ and define the profinite elements
Λ̂ =

∏
p Λ̂p, the Λ-adeles Af

Λ = Λ̂⊗R K and the monoid

Λ̂ns = Λ̂ ∩ (Af
Λ)∗.

Then PSh(Λ̂ns) is a nicely behaved topos: most importantly
Root(Λ̂ns) is a spectral space (coherent topos). This is not
necessarily true for PSh(Λns) itself, e.g. for Λ = Z[

√
−5].

42/48



Going from Λ̂ns to Λns

To go from Λ̂ns to Λns we look at the right Λ̂ns-set

Σ∗\(Af
Σ)∗

with the Λ̂ns-action given by multiplication on the right.

The action is by bijections, so we also have a left Λ̂ns-action, defined
as multiplication on the right by the inverse.

So we are in the situation where we have a covering map (both
complete spread and étale). In symbols

∫
Λ̂ns

Σ∗\(Af
Σ)∗ '

∫ Λ̂ns

Σ∗\(Af
Σ)∗.

Can we give a more concrete description?
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Going from Λ̂ns to Λns

In the category of elements, two objects are isomorphic if they are
related by a unit, i.e. by an element of Λ̂∗.

So the objects of the category of elements are classified up to
isomorphism by the double quotient

Σ∗\(Af
Σ)∗/Λ̂∗.

which is known as the ideal class group.

There is a special element [1] ∈ Σ∗\(Af
Σ)∗, that has as

endomorphism monoid exactly Λns. The other elements may have
endomorphism monoid (Λ′)ns for a different maximal order Λ′.

44/48



The full ring of adeles

We now restrict to the case Λ = Z.

The points of PSh(Zns) are classified up to isomorphism by the
double quotient

Q∗\Af
Q/Ẑ∗.

Is there an alternative topos where Af
Q gets replaced by the full ring

of adeles AQ = Af
Q × R here?

Answer. Yes, see the scaling site by Connes–Consani (2015).

The scaling site takes the topology on R into account. We give an
alternative construction where we equip with R with the discrete
topology.
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The full ring of adeles

Consider R as a Zns-set under multiplication, and the covering map

PSh(
∫ Zns

R) −→ PSh(Zns).

The points of PSh(
∫ Zns

R) are given by flat left Zns-sets A together
with a map

A −→ R

of left Zns-sets. As a result, the points are classified up to
isomorphism by

Q∗\AQ/Ẑ∗.
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The full ring of adeles

We can decompose R as R∗ t {0}, and the Zns-action on {0} is
trivial, so {0} is a copy of the terminal object.

This means that PSh(
∫ Zns

R) contains a copy of PSh(Zns).

This corresponds to the decomposition

Q∗\AQ/Ẑ∗ =
(
Q∗\(Af

Q × {0})/Ẑ∗
)
t
(
Q∗\(Af

Q × R∗)/Ẑ∗
)

considered by Connes–Consani for the scaling site.
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The full ring of adeles

More precisely, there is a decomposition

PSh(
∫ Zns

R) = PSh(Zns) t
⊔

a∈R∗/Q∗

PSh(
∫ Zns

Q∗).

This hopefully gives a simplified picture of what is happening with
the scaling site, and some intuition about how covering maps work
in practice.
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