Toposes of presheaves on monoids as generalized topological spaces

Toposes online, June 2021

Jens Hemelaer jens.hemelaer@uantwerpen.be

Universiteit Antwerpen

Based on joint work in progress with Morgan Rogers and on joint work in progress with Aurélien Sagnier.

Section 1

Étale geometric morphisms and complete spreads (joint work with Morgan Rogers)

6

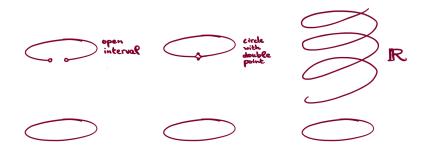
Local homeomorphisms

A sheaf \mathcal{F} on a topological space X can be equivalently described by a local homeomorphism $E \to X$.

Recall that f is a local homeomorphism iff there is an open covering $\{U_i\}_{i \in I}$ of E such that $f|_{U_i}$ is an homeomorphism onto an open set for all $i \in I$.

We use the terminology étale, rather than local homeomorphism, and call E the étale space associated to \mathcal{F} .

Local homeomorphisms



6

Local homeomorphisms

This gives a geometric interpretation to an object of Sh(X).

We can take this a little further, and think of \mathcal{F} as an étale geometric morphism $\pi : \mathbf{Sh}(E) \to \mathbf{Sh}(X)$.

Here the étale geometric morphisms to $\mathbf{Sh}(X)$ are precisely the geometric morphisms induced by local homeomorphisms.

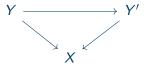
But there is an alternative characterization that can be extended to other toposes...

Fundamental theorem of topos theory

Theorem

If \mathcal{E} is a topos and X is an object in \mathcal{E} , then the comma category \mathcal{E}/X is a topos as well.

The category \mathcal{E}/X has as objects the maps $Y \to X$ in \mathcal{E} , and as morphisms the morphisms $Y \to Y'$ in \mathcal{E} such that the diagram

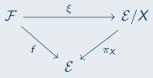


commutes.

Étale geometric morphisms

Definition

A geometric morphism $f : \mathcal{F} \to \mathcal{E}$ is étale if and only if there is an object X in \mathcal{E} and an equivalence $\xi : \mathcal{F} \to \mathcal{E}/X$ such that the diagram



commutes, with $\pi_X : \mathcal{E}/X \to \mathcal{E}$ the geometric morphism such that $\pi^*_X(\mathcal{A}) \simeq X imes \mathcal{A}.$

Étale geometric morphisms

By definition, there is a bijective correspondence

$$\{\mathsf{Objects} \text{ of } \mathcal{E}\} \ \leftrightarrow \ \left\{ \mathsf{\acute{E}tale} \text{ geometric morphisms } \mathcal{F} \to \mathcal{E}. \right\}$$

This extends to an equivalence of categories:

 $\mathcal{E} \simeq \text{Topos}_{\mathcal{E}}^{\text{\acute{e}t}}.$

Presheaves on a monoid

We now look at the topos PSh(N), the topos of presheaves on the monoid N.

We can identify PSh(N) with the category of right *N*-sets.

So étale toposes over $\mathbf{PSh}(N)$ correspond to right *N*-sets. How can we draw this?

Étale toposes over PSh(M)

Take $N = \{0, 1, 2, \dots\}$ under addition.

The base space is the terminal object:

.)+1

An étale topos over it is for example:

More formally...

Definition (Category of elements)

For N a monoid and X a right N-set, $\int_N X$ is the category with

- ▶ as objects the elements of *X*;
- ▶ as morphisms $b \rightarrow a$ the elements $n \in N$ such that an = b.

So morphisms are of the form $an \xrightarrow{n} a$. Further, there is a natural projection $\int_{N} X \to N$.

For every $n \in N$ and every $a \in X$, there is a unique lift $b \xrightarrow{n} a$. So $\int_N X \longrightarrow N$ is a discrete fibration and every discrete fibration is of this form.

From discrete fibrations to étale maps

It turns out that the étale geometric morphism

 $f: \mathbf{PSh}(N)/X \longrightarrow \mathbf{PSh}(N)$

agrees with the geometric morphism

$$\mathsf{PSh}(\int_N X) \longrightarrow \mathsf{PSh}(N)$$

induced by the projection functor $\int_N X \longrightarrow N$.

The Root topos

What happens if we take X = N, with right *N*-action given by multiplication?

The Root topos

The Root topos (Connes–Consani, 2019) associated to a monoid N is the topos

$$\mathfrak{Root}(N)\simeq \mathbf{PSh}(\int_N N).$$

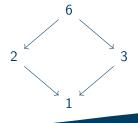
If N is left cancellative, then $\mathfrak{Root}(N)$ is equivalent to a topos of sheaves on a topological space.

The Arithmetic Site

If we take $N = \mathbb{N}_{+}^{\times} = \{1, 2, 3, ...\}$ as monoid under multiplication, then **PSh**(*N*) is the underlying topos of the Arithmetic Site by Connes and Consani.

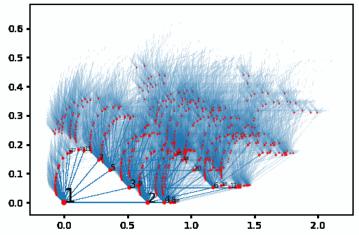
In this case $\int_N N$ is the category with the nonzero natural numbers as objects, and a unique morphism $m \to n$ whenever n divides m.

This is **Conway's big cell**, appearing in "Covers of the Arithmetic Site" by Le Bruyn.



Visualization big cell

s=1.20



Wait, what about left N-sets?

Étale geometric morphisms to $\mathbf{PSh}(N)$ correspond to right *N*-sets. What about left *N*-sets?

Is there a dual to the notion of étale geometric morphism?

Answer. Yes! (Bunge–Funk)

Let \mathcal{F} , \mathcal{E} be (Grothendieck) toposes.

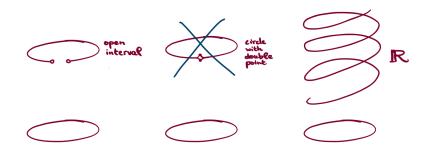
Definition (Bunge–Funk, special case)

A geometric morphism $f : \mathcal{F} \to \mathcal{E}$ is a spread if the complemented subobjects of objects of the form $f^*(X)$ give a generating family for \mathcal{F} .

This is a generalization of inclusions.

Example. If $Y = \{1, 1/2, 1/3, ...\} \cup \{0\}$, then the subset $Y \subseteq \mathbb{R}$ induces a spread, for the subspace topology *and* for the discrete topology on *Y*.

Spreads



Complete geometric morphisms

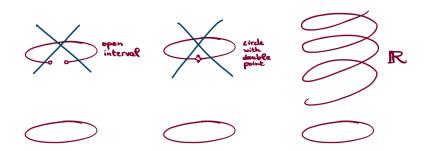
Let \mathcal{F} , \mathcal{E} be (Grothendieck) toposes, with \mathcal{F} locally connected.

Definition (Bunge–Funk, special case)

For a geometric morphism $f : \mathcal{F} \to \mathcal{E}$, take a site (\mathcal{C}, J) for \mathcal{E} . Consider the category \mathcal{D} with as objects the pairs (C, c) for C in \mathcal{C} and $c \in f^*(C)$ a component, and as morphisms $(C', c') \to (C, c)$ the morphisms $C \to C'$ that respect the choice of component. We say that f is complete if the following holds: if $S = \{(C_i, c_i) \to (C, c)\}_{i \in I}$ is a sieve such that the c_i cover c in \mathcal{F} , there is a covering sieve R in \mathcal{C} such that $(C', c') \to (C, c)$ is in Sfor all $a : C' \to C$ in R and all possible choices of c'.

Informally, a covering of $f^{-1}(U)$ comes from a covering on U.

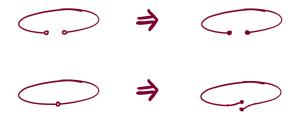
Complete spreads



Spread completion

Theorem (Bunge–Funk)

Every geometric morphism with locally connected domain has a factorization as a pure geometric morphism followed by a complete spread. In particular, a spread factorizes as a pure spread followed by a complete spread.



Distributions

If étale geometric morphisms correspond to objects of the topos, what do complete spreads correspond to?

Definition (Lawvere)

A distribution is a colimit-preserving functor $\mathcal{E} \rightarrow \mathbf{Sets}$.

Note that an object of \mathcal{E} is the same as a colimit-preserving functor **Sets** $\rightarrow \mathcal{E}$, so distributions are dual to objects.

Theorem (Bunge–Funk)

There is a correspondence between distributions on \mathcal{E} and complete spreads with \mathcal{E} as codomain (and locally connected domain).

Distributions for presheaves on a monoid

For $\mathcal{E} = \mathsf{PSh}(\mathcal{C})$, distributions correspond to functors

 $\mathcal{C} \to \textbf{Sets}.$

In particular, for $\mathcal{E} = \mathbf{PSh}(M)$, distributions correspond to left *M*-sets.

What is the associated complete spread?

Distributions for presheaves on a monoid

Definition (Category of elements, dual version)

For N a monoid and Y a left N-set, $\int^N Y$ is the category with

- ► as objects the elements of *Y*;
- ▶ as morphisms $a \rightarrow b$ the elements $n \in N$ such that na = b.

So morphisms are of the form $a \xrightarrow{n} na$. Further, there is a natural projection $\int^{N} Y \to N$.

For every $n \in N$ and every $a \in X$, there is a unique lift $a \xrightarrow{n} na$. So $\int^{N} Y \longrightarrow N$ is a discrete opfibration and every discrete opfibration is of this form.

Distributions for presheaves on a monoid

The complete spread associated to the left N-set Y, is then

$$\mathsf{PSh}(\int^N Y) \longrightarrow \mathsf{PSh}(N)$$

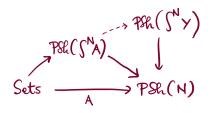
induced by the projection functor $\int^{N} Y \longrightarrow N$.

Example. We can define a coRoot topos, dual to the Root construction by Connes–Consani.

$$\operatorname{coRoot}(N) \simeq \operatorname{\mathsf{PSh}}(\int^N N)$$

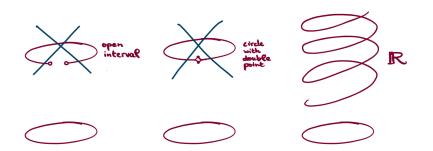
Over-toposes at models

What are the points of **PSh**($\int^{N} Y$)? Use the factorization:



The points of **PSh**(*N*) are precisely the flat left *N*-sets. It then follows by the results of Bunge–Funk that the points of **PSh**($\int^{N} Y$) are the flat left *N*-sets together with a morphism of left *N*-sets $A \rightarrow Y$.

Covering maps



Covering maps

In our situation, if a geometric morphism is both a complete spread and étale, then it is a covering map.

$$egin{array}{ccc} \mathcal{F} & \longrightarrow & \mathsf{PSh}(\mathcal{H}) \ f & & & \downarrow \ \mathcal{E} & \longrightarrow & \mathsf{PSh}(\pi_1(\mathcal{E})) \end{array}$$

This works for $\mathcal{E} \simeq \mathbf{PSh}(M)$ with M a monoid (Bunge–Funk), or $\mathcal{E} \simeq \mathbf{Sh}(X)$ for X a (Hausdorff, second countable) connected topological manifold (Funk–Tymchatyn).

Fundamental group of a monoid

In PSh(M), the locally constant objects are precisely the right *N*-sets on which *N* acts by bijections.

The full subcategory on the locally constant objects is again a topos, and it is equivalent to PSh(G) with G the groupification of N.

If X is a locally constant right N-set, then we can define a left N-action on X as well, as multiplication on the right by the inverse. Further, we get

$$\int_{N} X \simeq \int^{N} X$$

which shows how the complete spread and étale picture coincide.

٠

Classifying étale geometric morphisms

Let *N* be a monoid and *X* a right *N*-set. Let $\mathbf{PSh}(\int_N X) \longrightarrow \mathbf{PSh}(N)$ be the corresponding étale geometric morphism.

When is $\mathbf{PSh}(\int_{M} X)$ again of the form $\mathbf{PSh}(M)$ for some monoid M?

Enough that there is an element $x \in X$ such that for each $y \in X$ there is some $u \in N^{\ltimes}$ such that xu = y.

In this case $\mathbf{PSh}(\int_N X) \simeq \mathbf{PSh}(N_x)$ for $N_x = \{n \in N : xn = x\}$.

6

Classifying complete spreads

Let *N* be a monoid and *Y* a left *N*-set. Let $\mathbf{PSh}(\int^{N} Y) \longrightarrow \mathbf{PSh}(N)$ be the corresponding complete spread. When is $\mathbf{PSh}(\int^{N} Y)$ again of the form $\mathbf{PSh}(M)$ for some monoid *M*? Enough that there is an element $y \in Y$ such that for each $x \in Y$ there is some $v \in N^{\rtimes}$ such that y = vx.

In this case $\mathsf{PSh}(\int^N Y) \simeq \mathsf{PSh}(N^y)$ for $N^y = \{n \in N : ny = y\}.$

Detecting étale geometric morphisms

Theorem (H, Rogers)

Let $\phi : M \to N$ be a monoid map. Then the induced geometric morphism $\mathbf{PSh}(M) \to \mathbf{PSh}(N)$ is étale if and only if

- 1. ϕ is injective;
- 2. if $a \in \phi(M)$ and $ab \in \phi(M)$ then $b \in \phi(M)$;
- 3. for every $n \in N$ there is some $u \in N^{\ltimes}$ such that $nu \in \phi(M)$.

Example. $\phi : \mathbb{N} \to \mathbb{Z}_p, \ n \mapsto p^n$.

Detecting complete spreads

Theorem (H, Rogers)

Let $\phi : M \to N$ be a monoid map. Then the induced geometric morphism $\mathbf{PSh}(M) \to \mathbf{PSh}(N)$ is a complete spread if and only if

- 1. ϕ is injective;
- 2. if $b \in \phi(M)$ and $ab \in \phi(M)$ then $a \in \phi(M)$;
- 3. for every $n \in N$ there is some $v \in N^{\rtimes}$ such that $vn \in \phi(M)$.

Example. $\phi : \mathbb{N} \to \mathbb{Z}_p, \ n \mapsto p^n$.

Section 2

Arithmetic toposes for maximal orders (joint work with Aurélien Sagnier)

The Arithmetic Site

In their approach to the Riemann Hypothesis, Connes and Consani introduced in 2014 the Arithmetic Site: the topos $PSh(\mathbb{N}_+^{\times})$ equipped with a certain sheaf of semirings.

The sheaf of semirings has an essential role, but the topos $\mathsf{PSh}(\mathbb{N}_+^{\times})$ is itself already interesting. For example, it was computed by Connes and Consani that the points of this topos are classified up to isomorphism by the double quotient

$$\mathbb{Q}^* \backslash \mathbb{A}^f_{\mathbb{Q}} / \widehat{\mathbb{Z}}^*$$

with $\widehat{\mathbb{Z}} = \prod_{p} \mathbb{Z}_{p}$ the profinite integers and $\mathbb{A}_{\mathbb{Q}}^{f} = \widehat{\mathbb{Z}} \otimes \mathbb{Q}$ the finite adeles.

Maximal orders

Take R a Dedekind domain with as field of fractions a global field K.

- A maximal order over R is an R-algebra Λ such that Λ is finitely generated torsionfree over R and $\Sigma = \Lambda \otimes_R K$ is a central simple algebra over K.
- **Examples.** \mathbb{Z} , $M_n(\mathbb{Z})$, $\mathbb{F}_p[t]$, $M_n(\mathbb{F}_p[t])$, $\mathbb{Z}[i]$, $H_{\mathbb{Z}}$, with

 $H_{\mathbb{Z}} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{Z} \text{ or } a, b, c, d \in \frac{1}{2} + \mathbb{Z}\}.$

We write $\Lambda^{ns} = \Lambda \cap \Sigma^*$.

Maximal orders

Can we associate an Arithmetic Site to maximal orders?

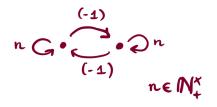
As an underlying topos, is it a good idea to take $\textbf{PSh}(\Lambda^{ns})$ or do we need a different topos?

What is the right structure sheaf of semirings? Do we get a spectral interpretation of the zeta function of Λ in topos theoretic terms?

If we are being precise, then the Arithmetic Site will not be a special case.

The closest approximation to $PSh(\mathbb{N}_{+}^{\times})$ is $PSh(\mathbb{Z}^{ns})$. How do we recover the topos $PSh(\mathbb{N}_{+}^{\times})$?

Answer. We take a look at the following \mathbb{Z}^{ns} -set X:



Recovering $\mathsf{PSh}(\mathbb{N}_+^{\times})$

For this \mathbb{Z}^{ns} -set, we have $\int_{\mathbb{Z}^{ns}} X \simeq \int^{\mathbb{Z}^{ns}} X \simeq \mathbb{N}_{+}^{\times}$.

We get that $\mathsf{PSh}(\mathbb{N}_+^{\times})$ is a two-fold covering space of $\mathsf{PSh}(\mathbb{Z}^{ns})$.

More covering spaces?

Now take a maximal order Λ and define the profinite elements $\widehat{\Lambda} = \prod_{\mathfrak{p}} \widehat{\Lambda_{\mathfrak{p}}}$, the Λ -adeles $\mathbb{A}^{f}_{\Lambda} = \widehat{\Lambda} \otimes_{R} K$ and the monoid

$$\widehat{\Lambda}^{\mathrm{ns}} = \widehat{\Lambda} \cap (\mathbb{A}^f_{\Lambda})^*.$$

Then **PSh**($\hat{\Lambda}^{ns}$) is a nicely behaved topos: most importantly $\mathfrak{Root}(\hat{\Lambda}^{ns})$ is a spectral space (coherent topos). This is not necessarily true for **PSh**(Λ^{ns}) itself, e.g. for $\Lambda = \mathbb{Z}[\sqrt{-5}]$.

6

Going from $\hat{\Lambda}^{\rm ns}$ to $\Lambda^{\rm ns}$

To go from $\widehat{\Lambda}^{\rm ns}$ to $\Lambda^{\rm ns}$ we look at the right $\widehat{\Lambda}^{\rm ns}\mbox{-set}$

 $\Sigma^* \setminus (\mathbb{A}^f_{\Sigma})^*$

with the $\widehat{\Lambda}^{ns}\text{-}action$ given by multiplication on the right.

The action is by bijections, so we also have a left $\widehat{\Lambda}^{ns}$ -action, defined as multiplication on the right by the inverse.

So we are in the situation where we have a covering map (both complete spread and étale). In symbols

$$\int_{\widehat{\Lambda}^{\mathrm{ns}}} \Sigma^* \backslash (\mathbb{A}^f_{\Sigma})^* \simeq \int^{\widehat{\Lambda}^{\mathrm{ns}}} \Sigma^* \backslash (\mathbb{A}^f_{\Sigma})^*.$$

Can we give a more concrete description?

Going from $\hat{\Lambda}^{\rm ns}$ to $\Lambda^{\rm ns}$

In the category of elements, two objects are isomorphic if they are related by a unit, i.e. by an element of $\widehat{\Lambda}^*$.

So the objects of the category of elements are classified up to isomorphism by the double quotient

 $\Sigma^* \backslash (\mathbb{A}^f_{\Sigma})^* / \widehat{\Lambda}^*.$

which is known as the ideal class group.

There is a special element $[1] \in \Sigma^* \setminus (\mathbb{A}_{\Sigma}^f)^*$, that has as endomorphism monoid exactly Λ^{ns} . The other elements may have endomorphism monoid $(\Lambda')^{ns}$ for a different maximal order Λ' .

6

The full ring of adeles

We now restrict to the case $\Lambda = \mathbb{Z}$.

The points of $\textbf{PSh}(\mathbb{Z}^{ns})$ are classified up to isomorphism by the double quotient

 $\mathbb{Q}^* \setminus \mathbb{A}^f_{\mathbb{Q}} / \widehat{\mathbb{Z}}^*.$

Is there an alternative topos where $\mathbb{A}^f_{\mathbb{Q}}$ gets replaced by the full ring of adeles $\mathbb{A}_{\mathbb{Q}} = \mathbb{A}^f_{\mathbb{O}} \times \mathbb{R}$ here?

Answer. Yes, see the scaling site by Connes–Consani (2015).

The scaling site takes the topology on \mathbb{R} into account. We give an alternative construction where we equip with \mathbb{R} with the discrete topology.

The full ring of adeles

Consider ${\mathbb R}$ as a ${\mathbb Z}^{ns}\text{-set}$ under multiplication, and the covering map

$$\mathsf{PSh}(\int^{\mathbb{Z}^{ns}} \mathbb{R}) \longrightarrow \mathsf{PSh}(\mathbb{Z}^{ns}).$$

The points of $\mathsf{PSh}(\int^{\mathbb{Z}^{ns}} \mathbb{R})$ are given by flat left \mathbb{Z}^{ns} -sets A together with a map

$$A \longrightarrow \mathbb{R}$$

of left $\mathbb{Z}^{ns}\mbox{-sets}.$ As a result, the points are classified up to isomorphism by

 $\mathbb{Q}^* \setminus \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^*.$

6

The full ring of adeles

We can decompose \mathbb{R} as $\mathbb{R}^* \sqcup \{0\}$, and the \mathbb{Z}^{ns} -action on $\{0\}$ is trivial, so $\{0\}$ is a copy of the terminal object.

This means that $\mathsf{PSh}(\int^{\mathbb{Z}^{ns}} \mathbb{R})$ contains a copy of $\mathsf{PSh}(\mathbb{Z}^{ns})$.

This corresponds to the decomposition

$$\mathbb{Q}^* \backslash \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^* = \left(\mathbb{Q}^* \backslash (\mathbb{A}^f_{\mathbb{Q}} \times \{0\}) / \widehat{\mathbb{Z}}^* \right) \sqcup \left(\mathbb{Q}^* \backslash (\mathbb{A}^f_{\mathbb{Q}} \times \mathbb{R}^*) / \widehat{\mathbb{Z}}^* \right)$$

considered by Connes-Consani for the scaling site.

The full ring of adeles

More precisely, there is a decomposition

$$\mathsf{PSh}(\int^{\mathbb{Z}^{\mathrm{ns}}} \mathbb{R}) \; = \; \mathsf{PSh}(\mathbb{Z}^{\mathrm{ns}}) \; \sqcup \bigsqcup_{a \in \mathbb{R}^* / \mathbb{Q}^*} \mathsf{PSh}(\int^{\mathbb{Z}^{\mathrm{ns}}} \mathbb{Q}^*).$$

This hopefully gives a simplified picture of what is happening with the scaling site, and some intuition about how covering maps work in practice.